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Abstract

Media streaming is among the most popular services provided over the Internet. The lack of

a central authority that controls the users, motivates the analysis of Media on Demand (MoD)

services using game theoretic concepts. In this work we define and study the corresponding

resource-allocation game, where users correspond to self-interested players who choose a MoD

server with the objective of minimzing their individual cost.

Formally, a system in our model consists of a set of N identical servers that service n users.

Each user is associated with a type (class) and should be serviced by a single server. Every user

generates one unit of load on the server it is assigned to. The load on the server constitutes

one component onf the user’s cost. In addition, the use of a server requires an access to an

additional resource whose activation cost is equally shared by all the users of the same class

that are assigned to the server. This model generalizes the model introduced in [11], where all

users belong to the same class. In MoD systems, the bandwidth required for transmitting a

certain media-file corresponds to one unit of load. The storage cost of a media-file on a server

is shared by the users requiring its transmission that are serviced by the server.

We provide results with respect to equilibrium existence, computation and quality. We

show that a Nash Equilibrium (NE) always exists while a Strong NE (SE) may not exist. The

equilibrium inefficiency is analyzed with respect to the max-cost objective. We prove that

the price of anarchy (PoA) is bounded by N and that this bound is tight. For the price of

stability (PoS) we show an upper bound of 2, a lower bound of 2− 1
N , and provide an efficient

algorithm for calculating a NE that achieves the PoS. For two servers we show a tight bound

of 3
2 .

Finally, we consider class-constrained systems, in which there is a limit, C, on the number

of classes that can be serviced by a server. We measure the equilibrium inefficiency with respect

to the max-load and sum-square-load objectives. For instances with no class activation cost,

we prove that the PoA is bounded by N − NC(N−1)
n and N(n−C(N−1))2+N(N−1)C2

n2 respectively

and that these bounds are tight. The PoS is shown to be 1 for both objectives. For instances

with class-activation cost, we show that the PoA is at least N for both objectives, even if we

allow a generalization of the activation cost from a constant to any function u(C,N, n).

2



Contents

1 Introduction 4

1.1 Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Equilibrium Existence and BRD Convergence 14

2.1 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Strong Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Equilibrium Inefficiency - Unconstrained Model 19

3.1 Price of Anarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Price of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Upper bound for two servers . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Upper bound for multiple servers . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Equilibrium Inefficiency - Class-Constrained Model 35

4.1 Instances with no activation cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Instances with class-activation cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Summary and Future Work 43

3



1 Introduction

Resource-allocation problems consider scenarios in which tasks or clients have to be assigned to

resources under a set of constraints. Resource-allocation applications exist in a variety of fields

ranging from production planning to operating systems. Game-theoretic considerations have been

studied in many resource-allocation problems. The game-theoretic view assumes that users1 have

strategic considerations acting to maximize their own utility, rather than optimizing a global

objective. In resource-allocation problems, this means that users choose which resources to use

rather than being assigned to resources by a centralized designer.

Two main approaches exist with respect to the cost function associated with the usage of a

resource. One approach considers congestion games in which user’s cost increases with the load on

the resource. The other approach considers cost sharing games in which users share the activation

cost of a resource, and thus, user’s cost decreases with the load on the resource. Feldman and

Tamir introduced and studied a model in which both considerations apply [11]. In this work

we generalize this model further and study systems in which resources have both positive and

negative congestion effects, and different clients may require different resources. Our work is

motivated by Media-on-Demand systems, in which the above cost scheme applies.

A system in our model consists of a set of identical servers. Each user of the system is

associated with a type (class) and should be serviced by a single server. Every user generates one

unit of load on the server it is assigned to. In addition, the use of a server requires an access to

an additional resource whose activation cost is equally shared by all the users of the same type

that are assigned to the server.

A configuration of the system is characterized by an allocation of clients to servers. The cost

of a client in a given allocation is the sum of two components: the load-cost determined by the

total load on his server, and his share in the class activation cost.

We study two system models. The first is an unconstrained model, in which there is no limit

on the distinct number of classes serviced by a single server. In this model, clients can always

migrate from one server to another. The second model assumes a class-constrained system, in

1clients, players, agents and users are used interchangeably throughout this work.
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which the different number of classes serviced by each server is bounded. In this model, clients

can migrate from one server to another if either the class-capacity of the target server is not fully

utilized, or if the target server already services clients of the client’s class.

A Nash equilibrium (NE) is a configuration in which no individual player can migrate and

reduce his cost. A strong Nash equilibrium (SE) [5] is a configuration in which no coalition of

players can deviate in a way that benefits all its members.

We study the two multi-class resource models with respect to Nash equilibrium existence,

calculation and efficiency. When considering equilibrium inefficiency we use the standard measures

of price of anarchy (PoA) [15, 19] and price of stability (PoS) [4], which measure the worst and

best NE compared to an optimal allocation, respectively. For the PoA and PoS measures we use

an egalitarian objective function, i.e., we measure the maximal cost among clients compared with

the maximal cost in an optimal allocation. In addition, we study the condition for an existence

of a strong Nash equilibrium.

Applications:

There are several real-world systems that fit the above multi-class resource-allocation scenario.

In particular, our study is motivated by media-on-demand (MoD) systems. A MoD system (see,

e.g.,[29, 12, 24, 25]) consists of a large database of media files and a set of servers. The system

services clients who consume media streams. Each client specifies a media stream request and

receives the stream via one of the servers. Specifically, each server acts as a server. The server’s

bandwidth corresponds to the load resource and the media-file specifies the client’s class. Each

media-file (class) has an activation cost reflecting the cost of copying the media file from the

central database, and storing it in the server’s local memory. The server’s bandwidth (load)

is distributed among all its clients, while the class activation cost is shared among all clients

requiring the same media file stream.

Another example is infrastructure-as-a-service (IAAS) in cloud computing. IAAS (see e.g.

[20]) is a cloud computing service model which offers computers, either physical or virtual ma-

chines. Each client has a task that has to be performed on a machine. In IAAS system, each
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machine acts as a server. The machine’s network bandwidth corresponds to the load resource and

the required software installation for the client’s task specifies the class. The load on the virtual

machine affects all the machine’s clients, while the software installation cost is shared among all

clients requiring it.

Production planning is another example of class-constrained application, arising in computer

systems and in many other areas. Consider a set of machines, each having a limited capacity

of some physical resource (e.g. storage space, quantity of production materials). In addition,

hardware specifications allow each machine to produce items of only C different types. For

example, suppose that the N machines are printers, each can be loaded with three paper trays

containing papers from three different colors. The system should produce printouts from M

distinct paper colors. In this example, each printer is a server. The pages per minute a printer

can print corresponds to the load resource, the delay in the production increases with the number

of products assigned to a printer. The different papers loaded to a printer’s trays specify the

classes assigned to it.

1.1 Model and Preliminaries

An instance of the multi-class resource-allocation problem is defined by a tuple G = 〈I,N,M,U〉.

I,N, and M are finite sets where I is the set of players, N 6= ∅ is the set of servers and M 6= ∅ is

the set of classes. We use M and N to denote both the sets and their cardinality, and let n = |I|.

Each player belongs to a single class from M , thus, I = I1 ∪ I2 · · · ∪ IM , where all players from

Ik belong to class k. For i ∈ I, let mi ∈ M denote the class to which player i belongs. Let

θ = min1≤k≤M Ik, that is, the size of a least popular class.

The parameter U ∈ R≥0 is the class activation cost, which is assumed to be uniform for all

classes. An instance of the Class-constrained resource-allocation problem includes an additional

parameter, C, denoting the maximal number of different classes allowed per server. We assume

that C ≥
⌈
M
N

⌉
, implying that an allocation of all players to servers in a way that obeys the

class-constraint always exists.

An allocation of players to servers is a function f : I → N . The allocation f induces an
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assignment of classes to servers af : M → 2N where for all 1 ≤ k ≤M , af (k) is the set of servers

in which class k is active. Formally, af (k) = {f(i)|i ∈ Ik}. Given an assignment, we denote

by Sj(f) the set of players allocated to a server j, i.e., Sj(f) = f−1(j). The load on a server

j, denoted by Lj(f), is the number of players assigned to j. We denote by Lj,k(f) the number

of players from Ik assigned to j. When clear in the context we omit f and use Sj , Lj and Lj,k

respectively. In the class-constrained model, an allocation f is considered feasible if the number of

different classes assigned to each server is at most C. That is, for all j ∈ N , |{k|j ∈ af (k)}| ≤ C.

The cost of a player i in an allocation f , denoted by cf (i), consists of two components: the

load on the server the player is allocated to, and the player’s share in the class activation cost.

The class activation cost is shared evenly among the players from this class serviced by the server.

Formally, cf (i) = Lf(i) + U
Lf(i),mi

. A step by a player i with respect to an allocation f is a

unilateral deviation of i, i.e., a change of f to f ′ such that ∀`6=if ′(`) = f(`) and f ′(i) 6= f(i). In

the class-constrained model, a step is considered feasible if the resulting allocation, f ′, is feasible.

An improving step of player i with respect to an allocation f is a step which reduces the player’s

cost, that is, cf ′(i) < cf (i). An allocation f is said to be a Nash Equilibrium (NE) if no player

has an improving step, i.e., for each player i and for every allocation f ′ such that ∀`6=if ′(`) = f(`)

it holds cf (i) ≤ cf ′(i). We denote by NE(G) the set of all feasible allocations that are a NE for a

game instance G.

Best Response Dynamics (BRD) is a local search method where in each step some player is

chosen and plays its best improving step, given the strategies of the other players. A coordinated

deviation by a set of players Γ ⊆ I with respect to an allocation f is a deviation of all the players

in Γ, that is, for all i /∈ Γ, f ′(i) = f(i) and for all i ∈ Γ, f ′(i) 6= f(i). In the class-constrained

model, a coordinated deviation is considered feasible if the resulting allocation, f ′, is feasible. An

improving coordinated deviation of a set Γ with respect to an allocation f is a coordinated step

which improves the cost of all players in Γ. That is, for all i ∈ Γ, cf ′(i) < cf (i). An allocation

f is said to be a Strong Nash Equilibrium (SE) if no set of players can perform an improving

deviation. We denote by SE(G) the set of all feasible allocations that are also a SE.

It is well known that decentralized decision-making may lead to sub-optimal solutions from
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the point of view of society as a whole. We quantify the inefficiency incurred due to self-interested

behavior according to the PoA and PoS measures. The PoA is the worst-case inefficiency ratio of

a NE, while the PoS measures the best-case inefficiency ratio of a NE, compared with the social

optimum.

Definition 1.1 Let G be a family of games, and let G ∈ G be some game in this family. Let

NE(G) be the set of Nash equilibria of the game G and let c(s) be the cost of a NE s with respect

to some objective function. If NE(G) 6= ∅:

• The price of anarchy of the game G is the ratio between the maximal cost of a Nash equi-

librium and the social optimum of G:

PoA(G) = max
s∈NE(G)

c(s)

OPT (G)
,

and the price of anarchy of the family of games G is

PoA(G) = SupG∈GPoA(G).

• The price of stability of the game G is the ratio between the minimal cost of a Nash equi-

librium and the social optimum of G:

PoS(G) = min
s∈NE(G)

c(s)

OPT (G)
,

and the price of stability of the family of games G is:

PoS(G) = SupG∈GPoS(G).

1.2 Related Work

The study of resource-allocation games with multiple resource classes combines challenges arising

in the two classical problems of multi-dimensional packing and load-balancing games. In this

section we survey some of the results known for variants of these problems that are relevant to

our work.

Multiple Knapsack Problems: In the classic Multiple Knapsack (MK) optimization problem,

a set of n items, each with a weight and a value, and a set of m knapsacks with capacity are
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given. The optimization goal is to select m disjoint subsets of items such that the total value of

the selected items is maximized and each subset can be assigned to a different knapsack whose

capacity is at least the total weight of the items in the subset. There is a wide literature on

multiple knapsack problems (see e.g., [6, 7] and detailed surveys in [17, 16]). Since these problems

are NP-hard, most of the research work in this area focuses on finding approximation algorithms.

Chekuri and Khanna [7] showed an elaborated polynomial time approximation scheme (PTAS)

for MK whose running time is polynomial in n but can be exponential in 1
ε , where ε is the

approximation factor.

The variant of MK denoted class-constrained multiple knapsack (CCMK) is the closest to the

model we study in Section 4. In CCMK each item has a type (color), a size and the a value.

Each knapsack has in addition to its size, a number of compartments which define the number

of different item types it can contain. The optimization goal in CCMK is to maximize the total

value of items packed into the knapsacks. The CCMK problem was introduced by Shachnai

and Tamir in [24]. They showed that even with unit size and unit profit items CCMK is NP-

hard and characterized instances for which a placement of all the items always exists and can

be found in polynomial time. For unit size and unit profit instances which do not fall under

the characterization, CCMK can be approximated to within factor C
C+1 where C is the minimal

number of compartments in a knapsack. For the general case of CCMK, Shachnai and Tamir [26]

derived a PTAS suitable for instances with a fixed number of distinct colors. In Section 4 we

study the corresponding CCMK game where each item is a selfish agent and each knapsack is a

resource server. In our game, as in [24], all items have unit size. The main differences between

the models are that servers in our game have no limited capacity thus a placement that packs all

the items always exist, and that packing an item is associated with a cost which depends on the

amount and type of other items in the same server.

Cost sharing Games: In cost sharing games, a possibly unlimited amount of resources is

available. The activation of a resource is associated with a cost which is shared among the players

using it. A well-studied cost sharing game is network design. A network design game is given by

a directed graph G = (V,E) and an activation cost per edge ce ∈ IR+. Each player i is associated
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with a pair of source-sink nodes (si, ti) that it wishes to connect. Each player chooses an si − ti

path Si. The standard cost function for this model is the fair-division mechanism, each player pays

for each edge e ∈ Si an equal share of the edge’s cost, the cost of a player i is ci =
∑

e∈Si
ce

|{j|e∈Sj}| .

A NE always exists in network design games and the PoS with respect to the total-cost objective

function is H(k), where k is the number of players and H is the harmonic function [3].

Congestion Games: In a resource-allocation congestion game, a predefined set of resources is

available. The cost of using a resource increases with the congestion (load) on it. Congestion

games were first introduced by Rosenthal in [21]. One example of a load balancing game is derived

from the job scheduling problem, where a set of jobs needs to be assigned to a set of machines.

Traditionally, this problem is treated as an optimization problem with a centralized utility that

controls all the jobs. One classical optimization objective is to minimize the makespan, i.e., the

maximum load over all machines. In the game-theoretic variant of this problem, each job is

controlled by a selfish agent. The job’s cost is defined as the load on the machine on which it is

assigned. These games were introduced and studied in [9] (see detailed survey in [28]). For the

case of identical machines, a NE always exists and BRD convergence rate is linear in the number of

agents, the PoS is 1 and the PoA is 2− 2
m+1 where m is the number of machines. Another example

of a congestion game is network routing. A network is given as a directed graph G = (V,E), with

vertex set V and directed edge set E. Each edge e has a continuous nondecreasing cost function

ce : IR+ → IR+ of the total load on the edge. Each player i is associated with a single source-sink

pair (si, ti) and amount of traffic, ri, to transmit from the source to the sink. The cost for each

player is the sum cost of all edges in its chosen path. Several variants of network routing games

have been studied (see e.g. [22]). For the case of linear latency cost functions, ce = aex+ be, the

PoA is 4
3 [23].

Conflicting Congestion Effects: In cost sharing games, congestion has a positive effect, and

players have an incentive to use resources that are used by others. In congestion games, congestion

has a negative effect, and players wish to avoid loaded resources. In [11], Feldman and Tamir

studied a model incorporating both positive and negative congestion effects. In their model, a job-

scheduling setting with unlimited set of identical machines is studied. Each job j has a length pj
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and each machine has an activation cost B. The set of players corresponds to the set of individual

jobs and the action space Sj of each player j is the set of machines. The cost function of job j in a

given schedule is composed of the load on the job’s machine and the job’s share in the machine’s

activation cost. For the uniform sharing rule in which the machine’s activation cost is uniformly

shared between the jobs allocated to it, a NE might not exist. For the proportional sharing rule

in which the share of a job in the machine’s activation cost is proportional to its length, the PoA

with respect to the makespan can be arbitrarily high. The PoS is tightly bounded by 5/4. We

generalize the conflicting congestion effects games by allowing several resources on a single server

while studying a model with limited amount of servers in the system.

1.3 Our Results

We study resource-allocation games with multiple resource classes. Our work distinguishes be-

tween two variants of the model, constrained and unconstrained, and between instances with or

without a class-activation cost. We study the induced games with respect to equilibrium exis-

tence, calculation and efficiency. Our results, as well as known results for similar games with a

single resource-class, are summarized in Table 1.

We show that both variants are potential games, thus, BRD converges to a NE. We show

that unlike the classic job scheduling game, a SE might not exist in our model when U > 2.

The analysis of equilibrium inefficiency distinguishes between the constrained and unconstrained

model.

Unconstrained model: In the unconstrained model there is no limit on the distinct number

of classes serviced by a single server. For this model, we compute the PoA and PoS with respect

to the max-cost objective. In Section 3.1 we present a tight bound of N for the PoA, in addition,

we present an upper bound of θ + 1, where θ is the size of the smallest class in the system. In

Section 3.2.1 we show that for any number of servers, there exists a game for which the best NE

has a max cost 2− 1
N times the optimum. In Section 3.2.3 we present a polynomial time algorithm

that constructs a NE with a max-cost of at most twice the optimum.

Class-constrained model: In this model the distinct number of classes serviced by a single
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server is bounded by C. We compute the PoA and PoS with respect to two objective functions,

max-load (ml) and sum-square-loads (ssl), denoted PoAm`(PoSm`) and PoAss`(PoSss`) respec-

tively. The load component represents the quality of service for each player, thus, the max-load

represents the worst service quality amongst all players and the sum-square-loads measures the

total quality of service for all players. We first analyze instances in which U = 0, that is, the cost

of players is only the load component. For these instances, the cost and load measures are identi-

cal. In Section 4.1 we present tight bounds for equilibrium inefficiency. For the max-load objective

we show that PoAm` = N − NC(N−1)
n , PoSm` = 1 and SPoSm` = 1. For the sum-square-loads

objective we show that PoAss` = N(n−C(N−1))2+N(N−1)C2

n2 and PoSss` = 1.

In the class-constrained variant we also extend the definition of the activation cost U , instead

of a constant number, we allow U to be a function of the game instance parameters, that is,

U = u(n,N,C). Extending the class activation cost, U , from a constant to a function, is another

attempt to find a cost function which encourages convergence to an efficient NE. In Section 4.2

we show that extending the class activation cost to a function does not improve the PoA. We

show that for any cost function and ε > 0 there exist an instance G such that PoAm`(G) > N − ε

and an instance G′ such that PoAss`(G
′) > N − ε. Thus, the upper bound of N for the PoA is

tight for both the objective functions.

Table 1 presents a comparison between the multi-class models studied in this work with single-

class models studied in previous work. The unconstrained model is compared with the conflicting

congestion effects model studied in [11], and the constrained model is compared with the classic

job scheduling game [28] with unit-load jobs. The comparison is presented using the notations of

this work. The model studied in [11] assumes that all users are from a single class, and that the

number of servers is unlimited. Note that the PoA is not bounded in both models, however, in

our model it is determined by the number of servers while in [11] it is determined by the class

(machine) activation cost. We also note that the upper bounds on the PoA and PoS in [11]

are valid also for instances of users with arbitrary loads, while the lower bounds are achieved

already with unit-load users (as assumed in our work). As indicated in the table, increasing the

number of classes from 1 to arbitrary M only slightly increases the PoS - which remains bounded
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by a constant. Job scheduling games with unit-load jobs are not too interesting: an optimal

assignment, which is also stable, assigns bn/Nc or dn/Ne jobs on each machine. As shown in

the two right columns of the table, the introduction of multi-class and class capacity changes the

game from a trivial one to one with unbounded PoA, and possibly no SE.

Class activation cost No class activation cost

Multi-class [?] Single-class [11] Multi-class [?] Single-class

Number of servers N Unlimitied N N

Number of classes M 1 M 1

Class activation cost U U 0 0

Class constraint None Irrelevant C Irrelevant

Cost function cf (i) Lf(i) + U
Lf(i),mi

Lf(i) + U
Lf(i)

Lf(i) Lf(i)

Potential game? Yes Yes Yes Yes

BRD convergence time t ≤ O(n4) Ω(n log n
U ) ≤ t ≤ n2 t ≤ O(n4) n

SE existence No No No Yes

PoA (max-cost) N 1+U
2
√
U

N − NC(N−1)
n 1

PoS (max-cost) 2− 1
N ≤ PoS ≤ 2 5

4 1 1

Table 1: Comparison between multi-class and single-class models (unit length) with and without

class-constraints. Our results appear in the columns marked by [?].
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2 Equilibrium Existence and BRD Convergence

For a given game G, let f be an allocation of the players to servers. Recall that Lj is the load on

server j and Lj,k is the number of players allocated to j who belong to the class k, and that the

cost of player i is

cf (i) = Lf(i) +
U

Lf(i),mi

.

In this section we show that a NE always exists in the induced game and that BRD always

converges to a NE. On the contrary, we show that a SE might not exist. This distinguishes our

game from classical load balancing games, without an activation cost, in which a SE always exists

[2].

2.1 Nash Equilibrium

We show that a multi-class resource-allocation game, with or without class-activation cost, is a

potential game [18]. This implies that a series of improving steps always converges to a NE. In

the class-constrained model this implies that a series of feasible improving steps always converge

to a feasible NE. Thus, the existence of a feasible NE allocation is equivalent to the existence of

a feasible allocation. Since we assume C ≥
⌈
M
N

⌉
, a feasible allocation always exists and so does a

NE. Given an allocation f , consider the following potential function,

Φ(f) =
∑

1≤j≤N
U · (HLj,1(f) +HLj,2(f) + . . .+HLj,M (f)) +

Lj(f)2

2
, (1)

where Hk is the kth harmonic number, that is, H0 = 0, and Hk = 1 + 1
2 + . . .+ 1

k .

Claim 2.1 Φ(f) is an exact potential function.

Proof: Suppose that f(i0) = j0, f ′(i0) = j1 and f(i) = f ′(i) for all i 6= i0. Let k = mi then

cf (i0) = Lj0(f) + U
Lj0,k(f) and cf ′(i0) = Lj1(f) + 1 + U

Lj1,k(f)+1 . Let

∆Φ = Φ(f ′)− Φ(f) =
∑

1≤j≤N

(Lj(f
′)2 − Lj(f)2

2
+

∑
1≤l≤M

U · (HLj,l(f ′) −HLj,l(f))).
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The profiles of all the servers other than j0 and j1 are identical in f and f ′ and the number of

players who belong to class l is the same for all l 6= k. Thus,

∆Φ =
Lj0(f ′)2 − Lj0(f)2 + Lj1(f ′)2 − Lj1(f)2

2
+

+ U · (HLj0,k(f ′) −HLj0,k(f) +HLj1,k(f ′) −HLj1,k(f)) =

=
(Lj0(f)− 1)2 − Lj0(f)2 + (Lj1(f) + 1)2 − Lj1(f)2

2
+

+ U · (HLj0,k(f)−1 −HLj0,k(f) +HLj1,k(f)+1 −HLj1,k(f)) =

= Lj1(f)− Lj0(f) + 1 +
U

Lj1,k(f) + 1
− U

Lj0,k(f)
=

= cf ′(i)− cf (i).

Thus, the change in the potential is exactly the change in player i’s cost. Since the move from

f to f ′ reduces the cost of player i, we have that cf ′(i) < cf (i) and Φ(f ′) < Φ(f).

Corollary 2.2 BRD converges and a NE exists.

The above claim guarantees that BRD eventually converges to a NE. Next, we show that BRD

converges to a NE in polynomial time. Specifically,

Claim 2.3 For every instance G, BRD converges to a NE within O(n4) steps.

Proof: Consider the potential function defined in (1). Since Hk ≤ k, the left addend of the

sum can be bounded as follows,

∑
1≤j≤N

U ·(HLj,1(f)+HLj,2(f)+. . .+HLj,M (f)) ≤
∑

1≤j≤N
U ·(Lj,1(f)+Lj,2(f)+. . .+Lj,M (f)) =

∑
1≤j≤N

U ·Lj = U ·n.

The right addend of the potential function is trivially bounded by n2

2 and we conclude that for

all f , Φ(f) ≤ U · n + n2

2 . Now consider an improving step by some player i. Since the potential

function is an exact potential function, the diff in the potential is exactly the improvement in i’s

cost. That is ∆Φ = cf ′(i)− cf (i) = ∆c`(i) + ∆cs(i). The diff in the load cost is an integer while

the diff in the activation cost is U
Lf ′(i),mi

(f ′) −
U

Lf(i),mi (f) . Since Lj,m is an integer and Lj,m ≤ n

for all m, j, the denominator of the activation cost diff is at most n(n − 1). Thus, an improving
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step reduces the potential by at least 1
n(n−1) , that is, ∆Φ ≥ 1

n(n−1) . Since the potential is always

positive, BRD converges in at most
maxfΦ(f)
min∆Φ = O(n2)

Ω( 1
n2

)
= O(n4) steps.

2.2 Strong Equilibrium

In Section 2.1 we have shown that for any game instance G, a NE exists and BRD converges

to a NE. We now show that when coordinated deviations are allowed, a SE might not exist.

For the special case of U = 0, where the cost function consists of only the load component,

the unconstrained model is identical to the classic job scheduling game with identical jobs and

machines. Andelman et al. [2] proved that in any job scheduling game a SE always exists. As we

show below, this is not valid when an activation cost component is introduced.

We first show that for any U ≥ 4 there exists a game instance that has no SE.

Lemma 2.4 For any class activation cost U ≥ 4 there exists an instance G that has no SE.

Proof: Given U , consider an instance G with two servers where

n = 1 + arg min
x∈{d

√
Ue,b

√
Uc}

(x+
U

x
).

Assume that all n players are of the same class. In this case, the cost for each player allocated

to a server with load ` is ` + U
` . The minimum of the cost function is achieved when ` =

arg minx∈{d
√
Ue,b

√
Uc}(x + U

x ), which is exactly n − 1 for G. Let f be an allocation other than

{n−1, 1}, let A be the set of players allocated to the higher loaded server, a coordinated deviation

of |A| − 1 players from that server to the other server would change their cost to the absolute

minimum, thus, this is an improving coalition step. Furthermore, for U ≥ 4 we have n+U
n < U+1.

Thus, in the allocation {n− 1, 1} the single player can reduce its cost by migrating to the other

server. We conclude that there exists no SE for G.

For 2 < U < 4, we define a family of games G = {Gk}∞k=1 and show that for any 2 < U < 4

there exists k ≥ 1 such that Gk with class activation cost U has no SE.

Definition 2.1 For every k ≥ 1 let Gk be a game instance with M = {a, b}, N = 2 and n = 4k+1,

where 2k + 2 players belong to class a and the remaining 2k − 1 players belong to class b.
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Observation 2.5 For any Gk ∈ G with 2 < U < 4, any allocation that splits the b-players

between the servers is not a SE.

Proof: Let s be an allocation that splits the b-players. Recall that Li denotes the load on server

i. We distinguish between two cases.

1. |L1−L2| ≥ 3. We show that s is not a NE. A b-player allocated to the higher loaded server,

will benefit from migrating to the other server. The load component cost is decreased by at

least 2 and since there is at least one b-player allocated to the other server, the player’s share

in the class activation cost is increased by at most U
2 < 2 thus the migration is beneficial.

2. |L1 − L2| < 3. Since n = 4k + 1 is odd, |L1 − L2| = 1. W.l.o.g assume that L1 = L2 + 1.

Thus, L1 = 2k + 1, L2 = 2k. We get that L1,a + L2,a = 2k + 2 and L2,a + L2,b = 2k.

Thus, L2,b = 2k − L2,a = L1,a − 2. Consider a coalition step where all the L2,b b-players

migrate from server 2 to server 1 and L2,b + 1 a-players migrate from server 1 to server 2.

After the step L1 = 2k and L2 = 2k + 1, thus, the load component costs of the coalition

participants remain the same while all of the b-players are allocated to server 1 and all

the players allocated to server 2 belong to class a thus the activation cost share of all the

coalition’s participants is reduced.

For U < 4, an allocation with a load difference of 4 or more between two servers is not a NE

since a player on the higher loaded server will benefit from migrating to the lower loaded server.

Observation 2.6 For any Gk ∈ G and U < 4, an allocation for which |L1−L2| ≥ 4 is not a SE.

Lemma 2.7 For every Gk ∈ G with 2 + 2
2k+1 < U < 2 + 2

k , Gk has no SE.

Proof: By Observation 2.6, an allocation f may be a SE only if |L1 − L2| < 4. Since n is

odd, |L1(f) − L2(f)| = 1 or |L1(f) − L2(f)| = 3. By Observation 2.5, f can be a SE only if all

the b-players are allocated to the same server. Combining the two observations, w.l.o.g, there are
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only three possible allocations which are not ruled out and could possibly be a SE. We show that

none of these allocations is a SE. (i) all the 2k + 2 a-players are allocated to one server, and the

remaining 2k − 1 b-class players are allocated to the other. In this case, consider a migration of

two a-players migration. Their cost prior the migration is c = 2k + 2 + U
2k+2 and their cost after

their migration is c′ = 2k + 1 + U
2 . Since U < 2 + 2

k ,

c− c′ = 1 +
U

2k + 2
− U

2
= 1− Uk

2k + 2
> 1−

2k + 2k
k

2k + 2
= 0.

(ii) 2k − 1 b-players and two or three a-players are allocated to server 2 and the remaining 2k

a-players are allocated to server 1. In this case, an a-player migrating from server 1 to server 2,

would have less or equal load and reduced share of the activation cost. (iii) 2k − 1 b-players and

1 a-player are allocated to server 2 and the remaining 2k + 1 a-players are allocated to server 1.

In this case the cost of the a-player on server 2 is c = 2k + U and migrating would result in cost

c′ = 2k + 2 + U
2k+2 . Since 2 + 2

2k+1 < U ,

c− c′ = U − 2− U

2k + 2
=
U(2k + 1)

2k + 2
− 2 >

4k + 2 + 4k+2
2k+1

2k + 2
− 2 = 0
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19

4 �� �
9

2�� � 4

�� � 5

�� � 5

�� � 4

�� �
7

2

	
� 	�� 	
� 	�� 	��

�� �
23

4

Figure 1: An illustration of Gk for k = 1 with U = 3. The costs correspond to a class a player. Profile (a)

is the only NE for the instance. Profile (c) is the result of a beneficial deviation of any two players from

the first server in profile (a). None of the profiles (b)-(e) is a NE.

Given U = 2 + ε for 0 < ε < 2 the game Gk for any 1
ε ≤ k < 2

ε has no SE. For ε ≤ 1, 1
ε ≥ 1

and an integer k such that 1
ε ≤ k < 2

ε exists. For 1 < ε < 2, 1
ε < 1 and 2

ε > 1 and an integer k

such that 1
ε ≤ k <

2
ε also exists. Combining Lemma 2.4 and Lemma 2.7, we conclude,
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Theorem 2.8 For every U > 2, there exists a game instance G such that G has no SE.

Remark: Another extension of the classical job scheduling game is to a class-constrained

model in which U = 0, jobs are from different classes, and there is a bound on the number of

different classes that can be processed by a single server. For this extension, a SE also always

exists and a sequence of feasible improving coalition deviations is guaranteed to converge to

a SE. The proof is identical to the proof for the non-constrained model [2], specifically, every

feasible improving coordinated deviation reduces lexicographically the vector of the sorted loads.

In particular, the lexicographically minimal allocation is a SE.

3 Equilibrium Inefficiency - Unconstrained Model

In this section we study the inefficiency caused due to strategic behavior, as quantified by the PoA

and PoS measures. We compute the PoA and PoS with respect to the objective of minimizing

the highest cost among all the players; that is, given an allocation f , the social cost of f is given

by

cmax(f) = max
i∈I

cf (i).

All of the results in this section refer to systems in which servers have unlimited class capacity. In

section 4 we study the class-constrained case. For a server j, define the cost of j as the maximal

cost among players allocated to j. That is, cf (j) = maxf(i)=j cf (i).

Let OPT denote the maximal cost of a player in an optimal assignment minimizing the

maximal cost. We start by providing several lower bounds on OPT. Some of our bounds are a

function of θ = min1≤k≤M Ik, the size of a least popular class. For simplicity, we use θ to denote

both the class and its size.

Claim 3.1 OPT ≥ max(
n+U

θ
N , Uθ , 2

√
U).

Proof: The cost of players who belong to the least popular class θ is at least U
θ , thus OPT ≥ U

θ .

Assume a player i is allocated to a server with load `+ x, where x is the number of players who

bleong to the classmi. The player’s cost is `+x+U
x . This is a convex function with a single minimal
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point for x > 0 at ` = 0 and x =
√
U . Thus, the cost of any player is at least

√
U + U√

U
= 2
√
U

and OPT ≥ 2
√
U . Let t be the sum cost of all the servers, t =

∑
j∈N c(j), recall that the cost of

a server is the max-cost of a player allocated to it. Since The total max-cost is at least the total

load on all servers plus the cost for class activation of a player from θ, we have t ≥ n+ U
θ . Using

the pigeonhole principal OPT ≥ t
N ≥

n+U
θ

N .

By further investigating the cost function we can provide another lower bound for OPT . Let

d = max( nN ,
√
U).

Lemma 3.2 OPT ≥ d+ U
d .

Proof: Consider the function c(x) = x + U
x . c(x) is a convex function with a single minimal

point for positive x at x0 =
√
U . If d =

√
U then d = x0 and d is the absolute minimal point of

the cost function. Thus, OPT ≥ d+ U
d . If d = n

N then n
N ≥

√
U . Since c(x) is a convex function

with a single minimal point at x0 =
√
U , any player on allocated to a server with load at least n

N

would have a cost of at least n
N + UN

n = d+ U
d . By the pigeonhole principle there exists at least

one server with load at least n
N . Thus, OPT ≥ d+ U

d .

When θ ≤ n
N , we can bound OPT further as a function of θ and U .

Lemma 3.3 If θ ≤ n
N , OPT ≥ θ + U

θ .

Proof: Consider a server that services x players of a single class. The cost of each player

is c(x) = x + U
x . The function c is convex with a minimum at x =

√
U . Using the pigeonhole

principle, there exists a server with at least n
N players.

1. If
√
U ≤ θ, then since c is increasing for x >

√
U , and θ ≤ n

N , players in a server with at

least n
N players would have a cost of at least n

N + UN
n ≥ θ + U

θ .

2. If
√
U ≥ θ then since c is decreasing for x <

√
U , any server with x players from class θ

would have a cost of c(x) ≥ x+ U
x ≥ θ+ U

θ . We conclude OPT ≥ θ+ U
θ . players in a server

with at most θ players would have a cost of at least θ + U
θ ≥

n
N + UN

n . Thus, any player

from θ would have a cost of at least θ + U
θ . We conclude OPT ≥ θ + U

θ .
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3.1 Price of Anarchy

In this section we analyze the PoA with respect to the max-cost objective. We show an upper

bound of N for the PoA, we also show that this bound is tight and that the PoA may be N − ε

for any ε > 0. We provide an additional upper bound, of θ + 1, implying that the existence of a

single small class guarantees low PoA.

Lemma 3.4 For any N ≥ 2 servers and any ε > 0, there exists an instance G for which

PoA(G) > N − ε.

Proof: Let k be an integer such that 1
Nk ≤ ε. Consider an instance G with n = Nk+3 players,

U = n and a single class. Consider the allocation f in which all the players are allocated to a

single server. The cost of each player in f is c1 = n + 1 = Nk+3 + 1. A player migrating to an

empty server would have a cost of 1 + U = n + 1 = c1. Thus, f is stable. On the other hand,

consider an allocation f ′ in which the players are equally distributed between the servers. Each

server is allocated with Nk+2 players, each having cost c′1 = Nk+2 +N . Therefore,

PoA(G) ≥ c1

c′1
=

Nk+3 + 1

Nk+2 +N
> N − 1

Nk
≥ N − ε.

Theorem 3.5 PoA ≤ N .

Proof: Let f be a stable allocation, and let j1 be a server such that mcf (j1) = mc(f). Let i

be a class with minimal group-size on j1. Thus, c1 = L1 + U
Lj1,i

is the maximal cost of a player in

f . We show that c1 ≤ n+ U
θ . By Claim 3.1, this implies that the PoA is at most N .

If j1 is the only server that services players from class i then Lj1,i ≥ θ. Thus, c1 ≤ n+ U
θ .

If players from class i are assigned in f to more than a single server, let j2 6= j1 be a least

loaded server that services class-i players in f . Denote `1 = Lj1,i and `2 = Lj2,i. The cost of a

class-i player on j2 is c2 = L2 + U
`2

. Since f is stable, a migration of an i-player from j1 to j2 is

not beneficial. Combining the fact that c2 ≤ c1, we get

L2 +
U

`2
≤ L1 +

U

`1
≤ L2 + 1 +

U

`2 + 1
. (2)
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Equation (2) implies that U ≤ `2(`2 + 1).

On the other hand, a migration of an i-player from j2 to j1 is also not beneficial. Thus,

L2 + U
`2
≤ L1 + 1 + U

`1+1 and we get

L2 + 1 +
U

`2 + 1
≤ L2 + 1 +

U

`2
≤ L1 + 2 +

U

`1 + 1
. (3)

Combining Equation (2) and Equation (3), we conclude that

U ≤ min(2`1(`1 + 1), `2(`2 + 1)). (4)

If class-i players are allocated to exactly two servers then θ ≤ |Ii| = `1 + `2. Equation (2)

implies L2 − L1 ≥ U
`1
− U

`2+1 − 1. Since n ≥ L1 + L2 = 2L1 + (L2 − L1), we have

L1 ≤
n− (L2 − L1)

2
≤ n

2
− U

2`1
+

U

2(`2 + 1)
+

1

2
.

Thus,

c1 = L1 +
U

`1
≤ n

2
+

U

2`1
+

U

2(`2 + 1)
+

1

2
. (5)

We distinguish between two cases:

1. If `1 < L1 then `1 ≤ L1
2 since i is the smallest class on j1 (otherwise, the max-cost on j1

would be achieved by a player from a smaller class).

(a) If `1 ≥ `2 then `1 ≥ θ
2 and U

θ ≥
U

2`1
. Using Equations (2) and (4),

c1 = L1 +
U

`1
≤ n

2
+
U

θ
+
`2
2

+
1

2
≤ n

2
+
U

θ
+
n− 1

2
+

1

2
≤ n+

U

θ
.

(b) If `1 ≤ `2 then U
`1
> U

`2+1 . Since `1 ≤ L1
2 ≤

n
4 −

U
4`1

+ U
4(`2+1) + 1

4 and using Equations (3)

and (4) we have

c1 = L1 +
U

`1
≤ n

2
+ `1 + 1− U

2(`2 + 1)
+

1

2
≤ n

2
+
L1

2
+ 1− U

2(`2 + 1)
+

1

2

≤ 3n

4
− U

4`1
+

U

4(`2 + 1)
+

1

4
+ 1− U

2(`2 + 1)
+

1

2
≤ 3n

4
+

1

4
+ 1− U

2(`2 + 1)
+

1

2

≤ 3n

4
+

7

4
+
U

θ
.

Thus, c1 ≤ n+ U
θ for n ≥ 7. For n < 7, the bound on c1 can be shown by brute-force

considerations. We omit the details.
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2. `1 = L1.

(a) If L1 ≤ L2 then, by Equation (2), `1 ≤ `2. Using Equations (5) and (4),

c1 ≤
n

2
+

U

2`1
+

U

2(`2 + 1)
+

1

2
≤ n

2
+ L1 + 1 +

U

θ
+

1

2
.

If L1 ≤ n−3
2 then c1 ≤ n + U

θ . Otherwise, L1 ≥ n
2 − 1 and L2 ≤ n

2 + 1. Since

c2 ≤ c1, there must be is a single class on j2 - as otherwise the maximal cost would be

achieved on j2. If L2 + 1 ≤
√
U then a migration of a player from j1 to j2 is beneficial

contradicting the stability of f . If L2 + 1 >
√
U then L2 + 1 + U

`2+1 ≤ |Ii|+
U
|Ii| ≤ n+ U

θ

and c1 ≤ n+ U
θ .

(b) If L1 > L2 then L2 ≤ n−1
2 and c1 ≤ L2 + 1 + U

L2+1 ≤ L2 + 1 + L2 ≤ n.

We conclude that c1 ≤ N ·OPT if class-i players are allocated to two servers.

If class-i players are allocated to more than two servers then since j2 is the least loaded server

with class-i players, except possibly j1, we have `2 ≤ L2 <
n
2 and c1 ≤ L2+1+ U

`2+1 ≤ L2+1+`2 <

n. Thus, for every possible allocation of class-i players, we showed that c1 ≤ n+ U
θ ≤ N ·OPT .

Our next result is an additional bound on the PoA, depending on the size of the smallest class.

Theorem 3.6 PoA ≤ θ + 1

Proof: Let f be a stable allocation, and let j be a server such that mcf (j) = mc(f). Let L1 be

the load on j and let L0 be the load on the least loaded server in f . If L1 ≤ n
N then mc(f) ≤ n

N +U .

Otherwise, by the pigeonhole principle, L0 <
n
N . Since f is stable, mcf (j) ≤ L0 +U + 1 ≤ n

N +U .

By Claim 3.1, OPT ≥ max( nN ,
U
θ ). Thus, PoA ≤

n
N

+U

OPT ≤ θ + 1.

3.2 Price of Stability

In this section we analyze the PoS with respect to the max-cost objective. For a system with two

servers we show that PoS = 3
2 . For systems with arbitrary number of servers, N , we show that

2− 1
N ≤ PoS ≤ 2.
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3.2.1 Lower Bound

We present a lower bound for the PoS for a system with N servers. We show that for every ε > 0,

PoS ≥ 2− 1
N − ε.

Theorem 3.7 For every ε > 0 and a system with N servers, there exists an instance G such that

PoS(G) > 2− 1
N − ε.

Proof: Given ε > 0 let n = max(
⌈

4(N−1)
ε

⌉
, 4N). Consider an instance G with N ≥ 2 servers,

M = {m,m′} where a single player belongs to class m and all other players belong to class m′.

Let U = n−1
N−1 − 2. A possible allocation for this instance is illustrated in Figure 2(a). The players

who belong to m′ are split evenly among N − 1 servers and the player of m is solely allocated to

the remaining remaining. The maximal cost for this allocation is for players who belong to m′

and is c1 = n−1
N−1 +1− 2(N−1)

n−1 . The only NE (up to server renaming) for this instance is illustrated

in Figure 2(b). The player of m′ has the maximal cost for this allocation c2 = n
N + n−1

N−1 − 2. A

player of m′ has a cost of at most c3 = n
N + U

n
N
−1 , a player of m′ migrating to a different server

would have a cost of at least c4 = n
N + 1 + U

n
N

+1 . Since n ≥ 4N and N ≥ 2, n−1
N−1 − 1 < n

N and

U < n
N − 1. Thus, c3 < c4 and the allocation is stable. We conclude that the PoS is at least

c2

c1
=

n
N + n−1

N−1 − 2

n−1
N−1 + 1− 2(N−1)

n−1

≥
n
N + n−1

N−1 − 2
n−1
N−1 + 1

= 1+
n
N − 3
n−1
N−1 + 1

≥ 1+
n
N − 3
n

N−1 + 1
≥ 2− 1

N
−4(N − 1)

n
≥ 2− 1

N
−ε.

� � 1
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Figure 2: (a) A non-stable allocation with max-cost c1 = n−1
N−1 + 1− 2(N−1)

n−1 , (b) A best NE with max-cost

c2 = n
N + n−1

N−1 − 2.
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3.2.2 Upper bound for two servers

For the case of N = 2 we show that the lower bound on the PoS is tight, that is, PoS = 3
2 .

Moreover, we describe an efficient algorithm that computes a NE whose social cost is at most 3
2 .

We first provide a slightly better lower bound on OPT , assuming at least two different classes.

Claim 3.8 For N = 2 and |M | ≥ 2, OPT ≥ θ + U
θ .

Proof: Consider the set of players who belong to the least popular class, if they are all allocated

to the same server then each pays at least θ for the load and U
θ for the class activation. Their

cost is therefore at least θ+ U
θ . If these players split between the servers, consider the server with

higher load, it is assigned with at least n
2 players, thus a player from θ would have activation cost

of more than U
θ and load-cost at least n

2 . Since |M | ≥ 2, it holds that θ ≤ n
2 and we conclude

that OPT ≥ θ + U
θ .

Next we show that when N = 2, it is possible to construct in polynomial time a NE with

max-cost at most 3
2OPT . The algorithm consists of two stages. First, the players are assigned to

servers, and then, as long as the assignment is not stable, a specific order of BRD is performed.

As we show in the sequal, this BRD process is guaranteed to end up with a NE. The initial

assignment is similar to Longest Processing Time (LPT) algorithm for job scheduling [14].

Algorithm 1 An algorithm for finding a NE achieving max-cost ≤ 3
2OPT for N = 2.

1. Partition the players to at most M sets according to the class they belong to.

2. Sort the sets by popularity, that is, Ii1 ≥ Ii2 ≥ . . . IiM .

3. Consider the sets according to the sorted order, assign all the players of the next set to the

least loaded server.

4. If the schedule is not stable, let players requesting the least popular class on the loaded

server migrate to the least loaded server.

Denote the two servers s1, s2 and let γ1 ≥ γ2 be the loads on the servers after step 3. Define

γ = γ2 and ∆ = γ1−γ2, that is, γ1 = γ+ ∆ and γ2 = γ. Since n = γ1 +γ2 it holds that γ = n−∆
2 .
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Recall that θ is the size of the smallest (and last) set assigned in step 3. In the following analysis

we use the following properties, which are valid since the assignment follows LPT order.

(P1) If there are at least two sets, then ∆ ≤ θ.

(P2) If the smallest set is on s1, then for every set i on s1, p(i) ≥ ∆.

(P3) If the smallest set is on s2, then for every set i on s1, p(i) ≥ ∆ + θ.

(P4) If there are at least two sets on s1 then ∆ ≤ n/3.

We show that the allocation f generated by Step 3 of Algorithm 1 achieves max-cost at most

3
2OPT , and that the max-cost does not increase during the stabilization step.

Lemma 3.9 If step 3 produces an allocation f with at least two sets on s1, then mc(f) ≤ 3
2OPT .

Proof: We distinguish between two cases, depending on the assignment of the smallest set θ.

Case 1 When θ is allocated to s1: By Property (P1), ∆ ≤ θ. The max-cost for this allocation

is on s1, and its value is mc(f) = γ + ∆ + U
θ = n

2 + ∆
2 + U

θ ≤
n
2 + θ

2 + U
θ . By Claims 3.1 and 3.8,

we have OPT ≥ max(
n+U

θ
2 , Uθ + θ), implying mc(f) ≤ OPT +

U
θ

+θ

2 ≤ 3
2OPT .

Case 2 When θ is allocated to s2: By Property (P3), for every set i on s1, p(i) ≥ ∆ + θ, thus

mc(s1) ≤ n+∆
2 + U

θ+∆ . By Property (P3), ∆ ≤ n
3 . If ∆ ≥ θ,

mc(s1) ≤ n

2
+
U

2θ
+

∆

2
≤ OPT +

n

6
≤ 3

2
OPT.

If ∆ < θ,

mc(s1) <
n

2
+
θ

2
+
U

θ
≤ OPT +

θ + U
θ

2
≤ 3

2
OPT.

In addition, the max-cost on s2 is

mc(s2) =
n−∆

2
+
U

θ
≤
n+ U

θ

2
+
U

2θ
≤ 3

2
OPT.

Therefore, mc(f) = max(mc(s1),mc(s2)) ≤ 3
2OPT .
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If the allocation f generated in step 3 is not stable, the algorithm applies a BRD process

letting players from the smallest non-stable set to migrate.

Lemma 3.10 If step 3 produces a non-stable allocation f , then applying a BRD process on the

smallest non-stable set would result in a NE allocation f ′ such that mc(f ′) ≤ 3
2OPT .

Proof: Since all players of the same class are assigned to the same server, any unilateral

deviation of a player would not decrease its class activation cost, the only possible beneficial move

is from s1 to s2. Any player deviating from s1 to s2 would result in a cost of γ + 1 + U . Denote

by θ0 the smallest set allocated to s1 in f . Players from this set have the highest cost on s1. Our

BRD process enables only players of class θ0 to migrate to s2.

Claim 3.11 If there are players of class θ0 on s1 and they do not have a beneficial move then no

player on s1 has a beneficial move.

Proof: In f , players from θ0 achieve the maximal cost on s1. The post-migration cost for any

single player migrating to s2 is γ + 1 + U . Thus, players from θ1 have the highest incentive to

migrate. Let fx denote the assignment f after x players from θ0 migrated. Assume that x < θ0,

that is, there are still players of class θ0 on s1, and that these players do not have a beneficial move.

The cost of a player from θ0 is γ+∆−x+ U
θ0−x . A migrating player would have cost γ+x+1+ U

x+1 .

Given that the migration is not beneficial, we have that γ+∆−x+ U
θ0−x ≤ γ+x+1+ U

x+1 . By the

choice of θ0, any other player on s1 has in fx class activation cost of at most U
θ0
< U

θ0−x and load-cost

γ+∆−x. Being the first of its set to migrate, its cost on s2 would be γ+x+1+U > γ+x+1+ U
x+1 .

Thus, players of other classes are paying in fx less than players of class θ and would pay more

than players of class θ if they migrate.

By Property (P1), ∆ ≤ θ0. Therefore, the load among the servers would be balanced (or

almost balanced if ∆ is odd) after at most
⌊

∆
2

⌋
players from θ0 migrate from s1 to s2. Moreover,

even when the load is balanced, there are at least
⌊

∆
2

⌋
players from θ0 on s1. We conclude that

the class activation cost of players from θ0 on s1 is always lower than the class activation cost of

players from θ0 on s2. Combining this fact with Claim 3.11, and the fact that s2 remains least
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loaded and no players will benefit from leaving it, we conclude that the BRD process in step 4

will terminate after at most
⌊

∆
2

⌋
steps.

We turn to analyze the max-cost in the resulting NE assignment. The cost of players from θ0

in f is γ + ∆ + U
θ0

. If f is not a NE then γ + 1 +U < γ + ∆ + U
θ0

implying U − U
θ0
≤ ∆− 1. Thus,

U(θ0 − 1) ≤ θ0(∆− 1) and U ≤ θ0(∆−1)
θ0−1 . By Property (P1), ∆ ≤ θ0. We conclude that U ≤ θ0.

Let x1 be the number of players from θ0 allocated to s1 after x2 ∈ {0, . . . ,
⌊

∆
2 − 1

⌋
} players from

θ0 have migrated to s2. cost(x1+1) = γ+∆−θ0+x1+1+ U
x1+1 and cost(x1) = γ+∆−θ0+x1+ U

x1
.

Thus,

cost(x1 + 1)− cost(x1) = 1 +
U

x1 + 1
− U

x1
= 1− U

x2
1 + x1

.

Assume by contradiction that cost(x1 + 1) ≤ cost(x1), thus 1 ≤ U
x21+x1

. Since x2 ≤ ∆
2 and ∆ ≤ θ0,

1 ≤ U
θ20
4

+
θ0
2

. Since U ≤ θ0 we conclude,

1 ≤ θ0
θ20
4

+
θ0
2

⇒ θ0 < 2 ⇒ θ0 = 1, U = 1 and ∆ ≤ 1 in contradiction to the fact that f /∈ NE(G).

We conclude that each step reduces the cost of s1. After
⌊

∆
2

⌋
steps (if BRD does not stop earlier),

there are
⌈
n
2

⌉
players on s1 and

⌊
n
2

⌋
on s2, players on s1 are stable since migrating would not

decrease their load or class activation costs. Players on s2 are stable since either they migrated

by a beneficial step from s1 or they are grouped together thus cannot improve their activation

cost by migrating and the load on s1 is higher. We conclude that after at most
⌊

∆
2

⌋
steps the

system reaches an allocation f ′ ∈ NE(G). Since the cost of s1 decreases with each BRD step,

costf ′(s1) ≤ costf (s1) ≤ 3
2OPT . Also, costf ′(s2) ≤ max(n2 + U

θ , costf (s1)) ≤ 3
2OPT . We conclude

mcf ′ ≤ 3
2OPT .

The above analysis assumes that in the assignment f there are at least two sets of players on

s1. We handle the case of a single set separately.

Lemma 3.12 If there is a single set of players on s1 in the assignment f , then there exists a NE

allocation f ′ such that mc(f ′) ≤ 3
2OPT .

Proof: We distinguish between three cases:

Case 1 :|M | = 1: In this case all the players are allocated by LPT to s1. Any allocation f

has x players on one server and n − x on the other. If OPT is achieved when x = 0 then f is
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optimal. For x ≥ 1, OPT ≥ max(x+ U
x , n− x+ U

n−x) ≥ max(2U
n ,

n
2 + U

n ). Consider an allocation

f that splits the players evenly between the servers, mc(f) = n
2 + 2U

n ≤ OPT + U
n ≤

3
2OPT . If

f /∈ NE(G), then the analysis in Lemma (3.10) guarantees that a BRD process starting from f

would result in a stable allocation f ′ with mc(f ′) ≤ 3
2OPT .

Case 2 :|M | ≥ 2 and Ls1 ≤ n+θ
2 : In this case cost(s1) ≤ n+θ

2 + U
θ ≤ OPT + θ

2 + U
2θ ≤

3
2OPT . If

f /∈ NE(G) then the analysis in Lemma (3.10) guarantees a BRD process starting from f results

in a NE allocation f ′ with mc(f ′) ≤ 3
2OPT .

Case 3 :|M | ≥ 2 and Ls1 >
n+θ

2 : In this case θ < n
2 . Change f by moving max(θ, ∆

2 ) players to

s2. After the change, cost(s1) ≤ n
2 + U

θ ≤
3
2OPT and cost(s2) ≤ n

2 + θ
2 + U

θ ≤ OPT + U
2θ + θ

2 ≤
3
2OPT . After the change, s2 is now the higher loaded server and we can use Lemma (3.10) and

performing the BRD on the moved players to generate a stable allocation f ′ ∈ NE(G) such that

mc(f ′) ≤ 3
2OPT .

3.2.3 Upper bound for multiple servers

For a system with an arbitrary number of servers, we present a polynomial time algorithm that

constructs a NE with max-cost at most 2OPT . We use the term big classes when referring to

classes with at least n
N players. Similar to the case N = 2, Algorithm 2, given below, assigns

complete classes to servers while only splitting big classes. If the resulting assignment is not

stable, a specific BRD process is performed.

Let f denote the allocation produced in step 4. We start by characterizing f and show that

mc(f) < 2OPT . We then consider the case that f is not stable and Follow-BRD, defined in

Algorithm 3, is applied. We show that Follow-BRD is guaranteed to converge to a NE allocation

f0 with mc(f0) < 2OPT . We first characterize some cases in which any BRD, not necessarily

Folllow-BRD, converges to a NE allocation f0 with mc(f0) < 2OPT , and then analyze Follow-

BRD for the remaining cases.

Observation 3.13 The maximal load in f is at most 2d− 1.
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Algorithm 2 An algorithm for finding a NE achieving max-cost ≤ 2OPT .

Let d = max(
√
U, nN ).

1. Consider the players according to their classes.

2. Partition any class Ik such that Ik ≥ d to
⌊
Ik
d

⌋
sets of equal sizes (up to a rounding difference

of 1).

3. Sort the resulting sets by their size in decreasing order.

4. Consider the sets according to the sorted order, assign all the players of the next set to the

least loaded server.

5. If the schedule is not stable, perform the Follow-BRD procedure.

Proof: Assume by contradiction that there is a server s with a load of at least 2d. Step 2

guarantees that the maximal size of a set allocated in step 4 is at most 2d− 1. Thus, there are at

least two different sets allocated to s. Let A be the first set allocated to s that increases the load

beyond 2d−1. Let ` be the load on s before A was added. Since the sets are ordered by decreasing

order of their sizes, |A| ≤ `. If ` ≥ n
N then by the pigeonhole principle there is a server s0 such

that Ls0 <
n
N , contradicting the assignment of A to s. If ` < n

N then |A| + ` ≤ 2` < 2n
N ≤ 2d,

contradicting the assumption that s gets load at least 2d.

Lemma 3.14 mc(f) < 2OPT .

Proof: Consider a server s such that mc(f) = mcf (s). By Observation 3.13 the maximal load

on s is at most 2d−1. If all the players in s belong to the same class, mcf (s) ≤ 2d−1+ U
d < 2d+ U

d .

By Lemma 3.2, OPT ≥ d + U
d . Thus, mc(f) < 2OPT . Let θ0 be the last set assigned to s, if

s is assigned with players of different classes, then θ0 <
n
N since the sets are assigned by LPT

order. By the pigeonhole principal, the load on s is at most n
N + θ0. Thus, mcf (s) ≤ n

N + θ0 + U
θ0

.

Since θ ≤ θ0 ≤ n
N and x + U

x is a convex function, using Lemmas 3.2 and 3.3, we conclude

θ0 + U
θ0
≤ max(θ + U

θ ,
n
N + UN

n ) ≤ OPT and mcf (s) < 2OPT .
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Lemma 3.15 If U ≤ n
N or θ = 1, then any BRD process, in particular a one starting from f ,

converges to an allocation f ′ such that mc(f ′) ≤ 2OPT .

Proof: We show that in this case, the maximal cost of a player is at most n
N + U . Any player

allocated to a server with load at most n
N in f has cost at most n

N + U . If there exists a server

with load more than n
N , then using the pigeonhole principle there is a server with load less than

n
N . Thus, a player in a server with load more than n

N can always migrate to a server with load

less than n
N and have cost at most n

N +U . By Claim 3.1, OPT ≥ max( nN ,
U
θ ). Thus, if U ≤ n

N or

θ = 1 we have n
N + U ≤ 2OPT .

Observation 3.16 If n
N < U < 4, then any BRD process, in particular one starting from f ,

converges to an allocation f ′ such that mc(f ′) ≤ 2OPT .

Proof: Consider the convex function c(x) = x+ U
x . c(x) has a single minimal point for positive

x at x =
√
U and a single minimal point for positive integer x at either x0 =

⌈√
U
⌉

or x0 =
⌊√

U
⌋
.

Thus, OPT ≥ x0 + U
x0

. Since U < 4, we conclude x0 = 1 or x0 = 2. As argued in the proof

of Lemma 3.15, any stable allocation f ′ generated using a BRD process has max-cost at most

n
N +U < 3 +U . If x0 = 2 then OPT ≥ 2 + U

2 and mc(f ′) ≤ 2OPT . If x0 = 1 then OPT ≥ 1 +U .

By Claim 3.1, OPT ≥ n
N and we conclude mc(f ′) ≤ n

N + U ≤ 2OPT .

Claim 3.17 If f is not stable then U < 2d.

Proof: By Observation 3.13, the maximal load on a server in f is at most 2d − 1. Let i be a

player in server s1 with a beneficial move to s2. The load difference between s1 and s2 is at most

2d − 1. The big classes are equally distributed in Step 2 to sets of size at least d. Since d ≥ n
N

and the sets are allocated in non-increasing order of size, servers with a set of a big class are only

assigned players of that class. Thus, players of big classes can only have a beneficial move to

servers not servicing the same class. Players of small classes are all in the same set generated in

Step 1 and are all allocated to the same server. Obviously such players can only have a beneficial

move to a server not assigned with their class. Let A be the last set assigned to s1 by Step 4.

Since the sets are assigned in non-increasing order of size, L1 − L2 < |A| and the cost of i prior
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to the improving step is at most c1 = L1 + U
|A| . The cost after the step is c2 = L2 + 1 + U . Since

c2 < c1 we have L2 + 1 +U < L1 + U
|A| ⇒ U( |A|−1

|A| ) < L1−L2−1 ≤ |A|−1⇒ U ≤ |A| ≤ 2d−1.

Algorithm 3 Follow-BRD

Repeat until converge:

1. While there exists a server s1 and a set of players A containing all the players of some class

a in s1 such that L1 ≥ |A|+ n
N , move A from s1 to some server s2 such that L2 <

n
N .

2. Perform a series of improving steps:

2.1. Let i1 be some player that has a beneficial move. Let a = mi1 .

2.2. Let i1 perform a beneficial step from s1 to some server s2.

2.3. As long as there exists another unsatisfied player i of class a in s1, such that a step

from s1 to s2 is beneficial for i, let i migrate to s2.

Claim 3.18 The Follow-BRD algorithm converges to a NE.

Proof: Consider the potential function Φ defined in (1). By Claim 2.1, any BRD move reduces

the potential. We show that every iteration of Step 1 of Algorithm 3 also reduces the potential.

Consider an allocation f and a server s1 allocated with a set of players A of class a and `1 ≥ n
N

players of a different class. Assume that the Follow-BRD moves A from s1 to some server s2 with

load `2 <
n
N resulting in an allocation f ′. We have

Φ(f)− Φ(f ′) =
(`1 + |A|)2

2
+ UH|A| −

`1
2

2
+
`2

2

2
+ UHL2,a(f) −

(`2 + |A|)2

2
− UHL2,a(f)+|A| =

= |A|`1 − |A|`2 + UH|A| + UHL2,a(f) − UHL2,a(f)+|A|.

Since `1 > `2 we have Φ(f)−Φ(f ′) > 0 and the potential decreases. In addition, all the migrations

performed in Step 2 clearly reduce the potential.

Lemma 3.19 If U ≥ 4, and the minimal set size is two, then Step 2 of Follow-BRD results in

an allocation with at least two players in any class allocated to a server.
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Proof: Assume that players i1, i2 are both from class a and assigned to s1. Assume further

that at some step i1 migrates from s1 to s2. Let `1 and `2 be the loads on s1 and s2 respectively

before the migration.

i. Assume that after the migration i2 is the only player of class a on s1. The cost of i1 before

the step was c1 = `1 + U
2 . The cost of i2 after the step is `1 − 1 + U . Thus, if U ≥ 1 a

migration of i2 to s2 is beneficial and the next step would be that migration.

ii. Assume that after the migration i1 is the only player of class a on s2. The cost of i1 before

the step was at most c1 = `1 + U
2 . Thus, the cost of i1 after the step is c′1 = `2 + 1 +U < c1.

The cost of i2 after the step is at least c1 − 1. The cost of i2 if it migrates to s2 would be

c′2 = `2 +2+ U
2 = c′1 +1− U

2 ≤ c1 +1− U
2 . Thus, if U ≥ 4 a migration of i2 to s2 is beneficial

and the next step would be that migration.

Combining (i), (ii) we conclude that if U ≥ 4, then Step 2 of Follow-BRD results in an allocation

in which on each server there are at least 2 players of each class allocated to that server.

Lemma 3.20 The maximal load of the allocation f ′ generated from f by the Follow-BRD proce-

dure is at most 2d− 1.

Proof: By Observation 3.13, the maximal load of f is at most 2d− 1. By Claim 3.17, if f ′ 6= f

then U ≤ 2d−1. Assume by contradiction that f ′ has maximal load at least 2d. Consider the first

step of the Follow-BRD that increases the maximal load of any server to at least 2d. Step 1 only

balances the load among the servers, thus such a step can only happen during Step 2. Assume

that in the first step that increases the load on some server to 2d, a player from class a migrates

from s1 to s2. Let f̂ be the allocation before the series of migrations of unsatisfied players from

class a from s1 to s2. Consider the allocation f̂ before the prior move of this series has taken

place (or this move if its the first of the series). Let A be the set of players from a on s1 in f̂ .

i. If all the players on s1 are of class a, then players on s1 can only benefit by migrating to a

less loaded server. Since in f̂ the max-load is at most 2d− 1, it is impossible to reach load

2d by beneficial steps.
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ii. If some players on s1 are of a different class, then the amount of players of a different class

is at most n
N − 1, otherwise A would have been moved in Step (1) to a less loaded server.

We also conclude that |A| ≤ n
N −1, otherwise some group of players of a different class would have

been moved by Step (1). The cost of a player i in A is cf (i) ≤ n
N −1+ |A|+ U

|A| ≤ d−1+ |A|+ U
|A| .

Following Lemma 3.19, |A| ≥ 2 and by Claim 3.17, U < 2d. Since x+ U
x is a convex function and

2 ≤ |A| < n
N we conclude |A|+ U

|A| ≤ max(2 + U
2 ,

n
N + UN

n ≤ d+ U
d ). The cost in a server with 2d

players is c2d ≥ 2d+ U
2d . If |A|+ U

|A| ≤ 2 + U
2 ,

c2d− cf (i) ≥ 2d+
U

2d
− (d+ 1 +

U

2
) ≥ d− 1 +

U

2d
− U

2
= d− 1− U(d− 1)

2d
= (d− 1)(1− U

2d
) ≥ 0.

If |A|+ U
|A| ≤ d+ U

d ,

c2d − cf (i) ≥ 2d+
U

2d
− (

n

N
− 1 + d+

U

d
) ≥ (d− n

N
) + 1− U

2d
> 0.

In both cases c2d > cf (i) in contradiction to the step being beneficial for i.

Theorem 3.21 Algorithm 2 produces a stable allocation with max-cost at most 2OPT .

Proof: If the allocation f generated by step 3 is stable then by Lemma 3.14 its max-cost is

at most 2OPT . If f is not stable, and θ = 1 or U ≤ n
N then by Lemma 3.15 any BRD process

results in a NE with max-cost at most 2OPT . If f is not stable, θ > 1 and n
N < U < 4 then

by Observation 3.16 any BRD results in max-cost at most 2OPT . If f is not stable, θ > 1,

U > n
N and U ≥ 4 then the minimal set size is at least 2 and by Lemmas 3.18, 3.19, Follow-BRD

procedure converges to a stable allocation f ′ in which the smallest set on each server is at least

2. Assume by contradiction that mc(f ′) > 2OPT . Let s be a server such that mcf ′(s) > 2OPT .

The cost of s is at most Lf ′(s)+ U
2 . Using Claim 3.17 we have U < 2d thus cf ′(s) < Lf ′(s)+d and

Lf ′(s) > d. If there is a single media unit allocated to s then cf ′(s) ≤ Lf ′(s) + 2d
Lf ′ (s)

. By Lemma

3.20, Lf ′(s) < 2d and cf ′(s) < 2d. If there are multiple media units allocated to s then by Lemma

3.19 the smallest set of players A who belong to the same class on s is at least 2. Since A wasn’t

moved by Step (1) of Follow-BRD we conclude cf ′(s) ≤ n
N −1+ |A|+ U

|A| ≤ d−1+ |A|+ U
|A| . Since

2 ≤ |A| ≤ n
N we have |A|+ U

A ≤ max(2 + U
2 ,

n
N + UN

n ≤ d+ U
d ). By Lemma 3.2, 2OPT ≥ 2d+ 2U

d .

As seen in Lemma 3.20, 2d+ U
2d ≥ d− 1 + |A|+ U

|A| . Since 2d+ 2U
d ≥ 2d+ U

2d , 2OPT ≥ mcf ′(s).
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4 Equilibrium Inefficiency - Class-Constrained Model

The class-constrained model introduces a constraint on the number of different classes each server

can accommodate. An allocation in the class-constrained model is feasible if the maximal number

of different classes assigned to a server is at most the class capacity C. An instance of the class-

constrained resource-allocation problem is defined by a tuple G = 〈I,N,M,U,C〉. We assume

that M
N ≤ dCe which implies that a feasible allocation always exist. As shown in Section 2, a

NE always exist in this model. In this section we study the inefficiency of the class-constrained

model as quantified by the PoA and PoS measures. We consider the dual component cost function

consisting of both load and activation cost, that is, cf (i) = Lf(i) + U
Lf(i),mi

. We also consider the

special case of U = 0 for which the cost function is only the load component, cf (i) = Lf(i). We

compute the PoA and PoS measures with respect to two objective functions, both measure the

quality of service provided to the players and ignore the activation cost. Specifically, we refer to

the max-load on some server and the sum-of-squares of the loads, given by

m`(f) = max
i∈I

Lf(i), and ss`(f) =
∑
i∈I

Lf (i)

We assume throughout this section that N divides n. This assumption is w.l.o.g and only simplifies

the presentation and calculations. We use PoSm`(PoAm`) and PoSss`(PoAss`) to denote the

PoS(PoA) with respect to the max-load and sum-square-loads objectives respectively.

4.1 Instances with no activation cost

We first analyze instances in which U = 0, that is, the cost of player i given an allocation f is

only the load component.

cf (i) = Lf(i) (6)

This game generalized the classic well studied load balancing game, by introducing the class

constraint. We consider feasible game instances, that is, we assume that dCe ≥ M
N . We study

the inefficiency incurred due to selfish behavior in class-constrained resource-allocation games

with the cost function defined in (6). For U = 0 the two measures of max-load and sum-square-
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loads coincide with the max-cost and sum-cost objectives, that is m`(f) = maxi∈I cf (i), and

ss`(f) =
∑

i∈I cf (i).

We first note that for U = 0, the potential function defined in (1) is exactly half the sum-cost,

Φ(f) =
∑

j∈N
Lj(f)2

2 . Since any feasible improving step decreases the sum-cost, a feasible optimal

allocation with respect to the max-cost objective function is also a NE and we conclude,

Observation 4.1 PoSss` = 1.

Next, we note that as in the unconstrained game, [2], the sorted load-vector of a feasible

improving coalition step is smaller lexicographically. Since the sorted load-vector is smaller lex-

icographically, the max-cost (which is identical to the max load for U = 0) does not increase

and a feasible optimal allocation with respect to the max-cost objective function is also a NE.

Furthermore, a feasible optimal allocation with respect to the max-cost objective function is also

a SE. Thus, We conclude,

Observation 4.2 PoSm` = 1 and SPoSm` = 1.

We turn to consider the PoA as a function of n, N and C. For both objectives we present

tight bounds. Let OPTm` and OPTss` denote the max-cost and sum-cost of an optimal allocation

with respect to corresponding objective functions.

We begin with a simple observation, recall that we assume that N divides n.

Observation 4.3 OPTm`(G) ≥ n
N .

Proof: There are n players and N servers, by the pigeon-hole principle we conclude that in

every feasible allocation there is at least one server j for which Lj ≥ n
N .

We introduce a tight bound for PoAm`.

Theorem 4.4 For every game instance G for which n ≥ CN , PoAm`(G) ≤ N − NC(N−1)
n .

Proof: Let B = maxg∈NE(G)ml(g). By Observation 4.3, PoAm`(G) ≤ NB
n . Assume by

contradiction that PoAm` > N− NC(N−1)
n , then NB

n > N− NC(N−1)
n , implying B > n−C(N−1).

Let f ∈ NE(G) be a feasible allocation in which cm`(f) = B, i.e., there exists a server j0 s.t.
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Lj0(f) = ml(f) > n− C(N − 1) and as a result
∑

j 6=j0 Lj(f) < C(N − 1). Using the pigeon-hole

principle we conclude that there exists some server j1 with a load Lj1(f) < C. Let i be a player

such that f(i) = j0 and consider the assignment f ′ resulting from the unilateral step of i from j0

to j1. We show that f ′ is feasible and that the step of i is beneficial, contradicting the assumption

that f is a NE. First, given that Lj1(f) < C, we have Lj1(f ′) ≤ Lj1(f) + 1 ≤ C thus at most C

different classes are assigned to j1 in f ′ and the class constraint capacity is met. The move of i

is beneficial because n ≥ CN implies that B > n − C(N − 1) ≥ C, thus a move from load B to

load at most C reduces the cost of i.

We show that the above analysis is tight.

Theorem 4.5 For every n,N,C such that n ≥ NC ≥ 2N there exists an instance G for which

PoAm`(G) ≥ N − NC(N−1)
n .

Proof: Given C ≥ 2. Consider the instance G where n ≥ CN , M = {a1, a2, ..., aC , b}. The

first C(N − 1) players classes are equally distributed between a1, ..., aC : the first N − 1 players’

class is a1, the next N − 1 players’ class is a2 etc. i.e. ∀1≤i≤C(N−1)mi = ad i
N−1

e. The remaining

B = n − C(N − 1) players’ class is b. We distinguish between two cases: (i) if B ≥ N − 1 then

B ≥ n
N and n

N ≥ N − 1, allocate the first N − 1 players and the last n
N − (N − 1) players to the

first server, since the last B players’ are all of class b and B ≥ n
N we conclude that the first server

is allocated with players of class either a1 or b, allocate the rest of the players equally between the

remaining servers, we claim that this allocation is feasible. The load on each server is no more

than n
N since the first server is allocated with n

N players and the rest of the players are equally

distributed between the remaining servers. The first server is allocated with players of class either

a1 or b and C ≥ 2, thus the class capacity is met, all the players requiring a1 are allocated to

the first server thus the remaining servers are allocated with players requiring a media unit from

{a2, ..., aC , b} and since |{a2, ..., aC , b}| = C the class capacity is met for them as well and the

allocation is feasible. (ii) if B ≤ N − 1 then B ≤ n
N and n

N ≤ N − 1, allocate the last B and first

n
N −B players to the first server, since the last B players’ class is b and n

N ≤ N − 1 we conclude

that the first server is allocated with players of class either a1 or b. The remaining players can be

allocated equally between the remaining servers. This allocation is feasible using the arguments
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in (i). Combining cases (i) and (ii) we conclude that

OPTm`(G) =
n

N
. (7)

Consider the following allocation f : each of the first N−1 servers is allocated C players of different

classes from {a1, ..., aC}, the remaining B players are all assigned to the last server. Formally,

f(i) =

 (i− 1)mod(N − 1) + 1 if 1 ≤ i ≤ C(N − 1)

N if i ≥ C(N − 1)

It is easy to verify that f is a feasible assignment. We claim that f is also a NE. For each player

i s.t. f(i) ≤ N − 1 moving from server f(i) to a different server j 6= f(i) would increase its cost

from C to C + 1 if j 6= N or to B + 1 if j = N . A player i s.t. f(i) = N cannot move since each

of the first N − 1 servers are already assigned with the C different media units a1, ..., aC , and all

the players allocated to the last server are of class b. We conclude that f ∈ NE(G). It holds that

ml(f) = B by combining with Equation (7) we get PoA(G) = N − NC(N−1)
n .

For the sum-square-load objective function, PoAss`(G) =
maxf∈NE(G) ss`(f)

OPTss`(G) . We will base our

analysis of PoAss` on an analysis of the load vector of the servers. We will first show a simple

mathematical property.

Property 4.6 Let x = (L1, L2, . . . Lk) and x̂ = (L̂1, L̂2, . . . L̂k) be two non-increasing vectors

(L1 ≥ L2 ≥ . . . ≥ Lk and L̂1 ≥ L̂2 ≥ . . . ≥ L̂k) in Nk with equal sums, that is,
∑

j Lj =
∑

j L̂j.

If there exists an index j0 such that for all j ≤ j0 it holds that Lj ≥ L̂j and for all j > j0 it holds

that Lj ≤ L̂j then ∑
j

Lj
2 ≥

∑
j

L̂j
2.

Proof: Given x, x̂, j0 as required, let dj = |Lj − L̂j |, let d =
∑

j≤j0 dj . Since the sum of the

vectors is equal it also holds that d =
∑

j>j0
dj .∑

j

L2
j =

∑
j≤j0

(L̂j + dj)
2 +

∑
j>j0

(L̂j − dj)2 =
∑
j

L̂2
j +

∑
j

d2
j + 2

∑
j<j0

djL̂j − 2
∑
j>j0

djL̂j (8)

Since for all j ≤ j0 it holds that L̂j ≥ L̂j0 and for all j > j0 it holds that L̂j0 ≥ L̂j we

have 2
∑

j<j0
djL̂j − 2

∑
j>j0

djL̂j+1 ≥ 2
∑

j<j0
djL̂j0 − 2

∑
j>j0

djL̂j0+1 = 2d(L̂j0 − L̂j0+1) ≥ 0.

Combining with Equation (8) we conclude
∑

j Lj
2 ≥

∑
j L̂j

2.
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Since players can migrate to any server with less than C players, we have the following.

Observation 4.7 For every instance G, if n ≥ NC then for every feasible allocation f ∈ NE(G)

and for all j it holds Lj(f) ≥ C.

We can now bound the sum-square-load in any NE assignment.

Lemma 4.8 For every instance G with n ≥ NC, it holds that maxf∈NE(G) ss`(f) ≤ (n−C(N −

1))2 + (N − 1)C2.

Proof: Consider the vector x = (n − C(N − 1), C, . . . , C) ∈ NN . Since n ≥ NC we have

n − C(N − 1) ≥ C and x is a non-increasing vector. For every f ∈ NE(G) let x̂ be the non-

increasing vector of the servers’ loads x̂ = (Lj1(f), Lj2(f), . . . , LjN (f)) where Lj1(f) ≥ Lj2(f) ≥

. . . ≥ LjN (f). By Observation 4.7 we have for all i, 1 ≤ i ≤ N , x̂i ≥ C, thus, for all i > 1,

xi ≤ x̂i. In addition
∑

i xi = n =
∑

i x̂i. We can therefore apply Lemma 4.6 to conclude that

csum(f) ≤
∑

i x
2
i = (n− C(N − 1))2 + (N − 1)C2.

Clearly, the minimal sum-cost when U = 0 is achieved in a balanced assignment, in which the

uniform servers’ load is n
N . Therefore,

Lemma 4.9 For every instance G, OPTss`(G) ≥ n2

N .

Combining Lemmas 4.8 and 4.9, we conclude

Theorem 4.10 For every instance G for which n ≥ CN ,

PoAss`(G) ≤ N(n− C(N − 1))2 +N(N − 1)C2

n2
.

The scenario described in Theorem 4.5 can be used to show that the above bound is tight.

4.2 Instances with class-activation cost

So far in this section, the cost was defined according to the load on the server and did not

include a class-activation component. In this section we consider cost functions that take both

components into account. We assume that the activation cost of a class on a server is equally

distributed between the players from the class assigned to the server. The cost of a player i given
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an allocation f is the sum of the load-cost of and i’s share in the activation cost of its class.

Formally, cf (i) = c`f (i) + csf (i), where the activation cost of i is

csf (i) =
U

Lf(i),mi

.

In this section we extend the definition of class-activation cost, instead of a constant cost, we

define U to be a function of the game instance parameters,

U = u(n,N,C).

We show that for any fixed activation cost function the PoA is either N or approaches N

with respect to both the max-load and the sum-square-loads objectives. This implies that adding

activation cost component to the cost is not helpful in reducing the inefficiency caused by the

selfish behavior of players. This is valid for any activation cost function, independent of its weight

in the total player’s cost. In our analysis, we distinguish between two cases, depending on the

value of the activation cost function U for large values of n. We show that if U is relatively high

then PoA = N , and if U is relatively small, then for any ε > 0, there exists an instance for which

PoA ≥ N − ε.

Lemma 4.11 If there exists an n0 such that U ≥ n for all n > n0 then there exists an instance

G such that PoAm`(G) = N .

Proof: Consider an instance G = 〈I > n0, N,M,U ≥ n,C〉 where all the players require the

same media unit. Consider the allocation f in which all the players are allocated to the same

server. Each player’s cost is n+ U
n , migrating to an empty server would change the player’s cost to

U+1. For U ≥ n we have U+1 ≥ n+ U
n , thus the allocation f is stable and maxi(Li(f)) = n. On

the other hand, in an optimal allocation the players are equally distributed between the servers.

The max load is n
N and we have PoAm`(G) = N .

Lemma 4.12 Given 1 < C < N if for all n0 > 1 there exists an n > n0 such that U < n then

for all ε > 0 there exists an instance G such that PoAm`(M) > N − ε.

Proof: Given ε > 0 let n0 = max(N2C2, (N−1)2C2

ε2
) and let n > n0 be a value such that U < n.

Consider the instance G = 〈I,N,M,C〉 where |M | = C+1. Assume that each of the first C classes
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Figure 3: (a) a NE with m` = n for U ≥ n, (b) a NE with m` = n− (N − 1)C
√
U for U < n.

have exactly (N − 1)
√
U players and the last class has the remaining n − (N − 1)C

√
U players.

Consider the allocation f where each of the first N − 1 servers are allocated with C
√
U players,

√
U players of each of the first C classes. The remaining n− (N−1)C

√
U players are all allocated

to the last server (see Figure 3(b)). We claim that this allocation is stable by showing that (i)

players on the last server cannot migrate, (ii) migrations within the first N − 1 servers are not

beneficial and (iii) migrations to the last server is not beneficial. For (i) note that players on the

last server cannot migrate due to the class capacity as all other servers are assigned C classes. (ii)

The cost of every player in the first N−1 servers is C
√
U+ U√

U
= (C+1)

√
U . Thus, a migration of

a player among the first N −1 servers would increase its cost to (C
√
U +1)+ U√

U+1
> (C+1)

√
U .

(iii) A migration of a player to the last server would change its cost to n− (N − 1)C
√
U +U + 1.

Since n ≥ N2C2 and U < n we have n − (N − 1)C
√
U + U + 1 > CN2 + U + 1 > (C + 1)

√
U

and the migration is not beneficial. Combining (i) − (iii) we conclude that f is stable and

maxi(Li(f)) = n − (N − 1)C
√
U . On the other hand, a feasible optimal allocation with respect

to the max load is achieved when all the players requiring each of the first C media units are

all allocated to a different server and the remaining players requiring the last media unit are

distributed such that each server is allocated exactly n
N players. We conclude that PoAm`(G) ≥

n−(N−1)C
√
U

n
N

= N − (N−1)C
√
U

n > (N−1)C√
n

. The choice of ε implies PoAm`(G) > N − ε.
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Combining the last two lemmas we conclude,

Theorem 4.13 For every U = u(C,N, n) and ε > 0 there exists an instance G such that

PoAm`(G) > N − ε.

The maximal sum-square-loads is n2 and is achieved when all the players are on the same

server, while the minimal sum-square-loads is n2

N and is achieved when the players are equally

distributed between the servers. Thus, similar instances and allocations can be used to show the

same result with respect to the sum-square-loads objective function.

Observation 4.14 For every U = u(C,N, n) and ε > 0 there exists an instance G such that

PoAss`(G) > N − ε.

Notice that for both the objectives, the ratio between the maximal possible social cost (when

all the players are allocated to the same server) and the minimal possible social cost (when the

players are equally distributed between the servers is exactly N . Thus, the above bounds are

tight.
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5 Summary and Future Work

In this work we considered a resource-allocation game with multiple resource classes in which

selfish players are allocated to identical servers. Each player belongs to a single class and requires

a single load unit. Each player’s cost consists of the load on the assigned server and his share of the

class activation cost. The class activation cost is identical for all the classes and uniformly shared

between the players of the class on each server. We have studied two variants of the multi-class

resource-allocation game, constrained and unconstrained. In the constrained model, each server

can accommodate a limited number of different classes while in the unconstrained variant each

server can accommodate any number of classes. A game in the multi-class model is characterized

by the set of players, I, their partition into classes, I1, . . . , IM , the set of servers, N , and in the

constrained model a class constraint C.

We provided answers to the basic questions arising from this model for both models. Specifi-

cally, the existence of Nash equilibrium and BRD convergence, the existence of SE and lower and

upper bounds for PoA and PoS. We list below some open problems and possible directions for

future work.

1. Conditions for constant PoA: The main question which remains open throughout this work is

whether there exists a cost function or a setting which ensures a constant factor inefficiency

due to selfish behavior in the worst case. In both constrained and unconstrained models,

the studied objective functions with the natural cost function of summing the load and the

activation cost component resulted in unbounded PoA.

2. Heterogeneous systems: our work considered systems with identical servers and unit size

load requirements. One possible generalization could include unrelated servers and/or non-

identical load requirements. In the classic load balancing game, there is a significant differ-

ence between the results of related and unrelated systems. It would be interesting to study

the corresponding differences in the multi-class model.

3. Players with class preferences or with multiple classes: In our work players belong to a single

class. In a possible generalization of this game (studied in [27] for the centralized model), a
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player may belong to several classes and has preferences regarding his class. This scenario

fits for example media-on-demand systems in which a client is ready to see one of several

movies, and provides his preferences for broadcast. In the corresponding game, the utility

of a player depends also on the class to which it is assigned. Another direction is to study

systems in which a player requires more than a single resource for his processing. Thus, a

player may belong to multiple classes and needs to pay his share in the activation cost of

all the resources he needs.

4. Objective functions: In the unconstrained model we calculated inefficiency with respect to

the max-cost objective function. Future work could also consider other objective functions

such as sum-cost. In the constrained model we calculated inefficiency with respect to load-

based objective functions, similar analysis could be applied to cost-based objective functions

for instances with U > 0.

5. BRD convergence time: We have shown that BRD converges within an upper bound of

O(n4) steps, a lower bound of Ω(n log n) steps can be derived from a corresponding analysis

in [11]. Closing the gap and providing a tight bound for BRD convergence time remains

open.

6. Strong equilibrium: We have shown that a SE might not exist for U > 2, for U = 0 a SE

always exist. The existence of SE for 0 < U ≤ 2 remains an open question. Characterizing

conditions in which SE exits and analyzing SE inefficiency are additional interesting topics

for future work.
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 תקציר
 

העבודה עוסקת במשחק המתקבל מבעיית הקצאת משאבים שבה כל משתמש הינו שחקן אסטרטגי 

המנסה למזער את העלות האישית שלו. במשחקי הקצאת משאבים הקיימים בספרות, כל המשאבים 

שייכים למחלקה בודדת. בעבודה זו אנו חוקרים מודל שבו שחקנים שייכים למחלקות שונות וכל מחלקה 

[ עבור משחקי הקצאת משאבים 11דורשת אתחול של משאב אחר. מודל זה מכליל את המודל שנחקר ב]

 עם עלות אתחול, שבו כל המשאבים שייכים לאותה מחלקה.

משתמשים. כל  n)שרתים( זהים שמשרתים  מתקנים N-מערכת במודל שאנו חוקרים מורכבת מ

משתמש מייצר יחידת עומס אחת על המתקן  משתמש משויך למחלקה ומקבל שירות ממתקן בודד. כל

שאליו הוא מוקצה. בנוסף, השימוש במתקן דורש אתחול של משאב המשותף לכל המשתמשים באותו 

מתקן שהם מאותה מחלקה. עלות האתחול מתחלקת באופן שווה בין כל המשתמשים של המתקן שהם 

י דרישה שמספק שירותי אחסון לדוגמא, מתקן יכול להיות שרת במערכת מדיה לפמאותה המחלקה. 

ושידור. משתמש במערכת דורש שידור של יחידה אחת של רוחב פס מסרט מסוים. עלות אחסון הסרט 

יינים לקבל את השידור של הסרט על הדיסק של השרת מתחלקת באופן שווה בין כל המשתמשים שמעונ

 השרת. על ידי

תמשים למתקנים. העלות לכל משתמש בהינתן הקצאת המש נפיגורציה של המערכת מאופיינת על ידיקו

נקבעת על פי כמות המשתמשים שהוקצו לשרת ועלות  ההקצאה מורכבת משני מרכיבים: עלות העומס

 האחסון נקבעת על פי עלות האתחול חלקי כמות המשתמשים שהוקצו לשרת השייכים לאותה מחלקה.

כנסות לשיווי משקל נאש )השמה יציבה(. בעבודה זו נציג תוצאות המתייחסות לקיום, חישוב וזמן הת

נראה ששיווי משקל נאש טהור תמיד קיים בעוד ששיווי משקל חזק אינו מובטח. יעילות שיווי המשקל 

וחסם זה הדוק.  N( חסומה על ידי PoAנמדדת לפי העלות המקסימלית. אנו נוכיח שמחיר האנרכיה )

2ומלמטה על ידי  2( חסום מלמעלה על ידי PoSמחיר היציבות ) −
1

𝑁
יעיל לחישוב , אנו נראה אלגוריתם 

שיווי משקל נאש שבו מתקבל מחיר היציבות הנ"ל. במקרה המיוחד של שני מתקנים נראה חסם הדוק 

של 
3

2
 עבור מחיר היציבות. 

כולות לקבל , על מספר המחלקות השונות שיCלסיום, נעסוק במערכות חסומות, שבהן קיים חסם, 

שירות ממתקן בודד. נמדוד את יעילות שיווי המשקל ביחס לעומס המקסימאלי וביחס לסכום ריבועי 

𝑁העומסים. במקרים בהם אין עלות אתחול, מחיר האנרכיה חסום על ידי  −
𝑁𝐶(𝑁−1)

𝑛
 -ו 

𝑁(𝑛−𝐶(𝑁−1))
2
+𝑁(𝑁−1)𝐶2

𝑛2
מדדים. עבור שני ה 1בהתאמה וחסמים אלו הדוקים. מחיר היציבות הוא  

בשני המדדים, אפילו בהכללה של  Nבמקרים בהם קיימת עלות אתחול, מחיר האנרכיה הוא לפחות 

 .u(C,N,n)עלות האתחול מקבוע לפונקציה 

 

 

 



 

 

 בהרצליה הבינתחומי המרכז
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הקצאת משאבים עם מספר מחלקות  משחקי
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