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Abstract 

In this paper we characterize the optimal linear and piecewise linear EITC schedule. In the linear 

framework we demonstrate that in the presence of unemployment, an increase of social inequality 

aversion and a decrease in labor aversion both derive in a lower optimal EITC. For the piecewise linear 

schedule, we show that in most cases the optimal schedule is a triangle, which is at odds with actual 

policy, that is based on a trapezoid. According to our simulation, the use of a trapezoid instead of a 

triangle implies a substantial loss in terms of Social Welfare. We show that a trapezoid is optimal only 

when the wage distribution among the working poor is even, with a discrete jump for higher wage 

groups. After mimicking the wage distribution in different countries, we show that changes in the share 

of the "very rich" have a lower impact on the optimal EITC compared to changes in the wage variance. 

Finally, we show that the main impact of an increased minimum wage on the optimal EITC schedule is a 

more pronounced phasing out.  
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1. Introduction 
 

The earned income tax credit has been adopted in the U.S. in mid-seventies and has become the most prominent 

social program with a participation of 27.5 million individuals, who get substantial wage subsidies from the federal 

government. The program has been adopted also in many countries like UK and New Zealand and is gradually 

being extended to new ones , like Israel, that implemented the program in 2008. 

So far the theoretical analysis on the optimal EITC schedule is relatively scarce. The most prominent paper was 

written by Saez (2002) who analyzed the optimality of the EITC vis-à-vis a basic transfer to the unemployed, and 

found that that the result depends on extensive and intensive margin elasticities at the labor market. Note, 

however that in Saez's framework elasticities are exogenous which is a drawback since lower wage individuals 

entering the labor market are crucially affected by the government transfer (income effect) – and thus it is 

important to study first the direct implications of this fact on the extensive margin reaction of the working poor. 

In this paper we build a simple model to study the optimal linear EITC at first2, and then we move forward to 

analyze the optimal piecewise linear EITC according to Saez's framework.   

The paper is organized as follows. In the first section we study the optimal linear EITC in a situation where 

individuals decide whether to enter the labor market according to their tastes toward consumption and leisure, 

given the demogrant received from the government. Understanding first the optimal linear framework has been 

the way transited in optimal income taxation, as a first step for enhancing the optimality analysis. Once we get 

the insights into this exercise, we move forward to study the more realistic case of an optimal piecewise linear 

EITC. For this purpose we perform an analysis with exogenous elasticities along the lines of Saez (2002) in which 

we ask the following question: is the optimal EITC schedule a trapezoid, as we see in most implemented systems 

                                                           
2 In the linear model the income effect plays a role. For a more sophisticated framework that combines the income effect 
with an optimal piecewise optimal schedule see Regev and Strawczynski (2015). 
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at different countries? Finally, we ask two additional questions: what is the optimal EITC for a given wage 

distribution and how it is affected by the existence of a minimum wage? 

2. The optimal linear EITC 

In this section we characterize the optimal linear EITC using a simple stylized model. While the relationship 

between different variables at the optimum is analyzed in next section using a less restrictive framework, we still 

get value added in this section by using a simple model with a linear EITC, in which the results can be proved – as 

a first step for understanding the optimal EITC schedule.  In this model the government chooses the optimal EITC 

given the maximization by individuals. 

Individuals 

Assume that individuals obtain utility (U) from consumption (c) and leisure (1-l):  

(1)  U୧  = ln(c୧) + δ୧ ln(1 − l୧) 

Where  δ represents the labor aversion, which is usually higher for low income individuals. For simplicity we will 

assume that there are three types of individuals in the economy, differentiated by the wage they can achieve at 

the labor market: 

(2) w଴ < wଵ < wଶ 

Individual 0 is the unemployed (as a consequence of his/her low w), individual 1 is the working poor since he/she 

gets a relatively low salary, and individual 2 is the high-income type, who pays the income tax and finance the 

unemployment benefits and the EITC. The budget constraints of these three individuals are: 

(3) c଴ = T଴ +  ܣ

cଵ = ଴ܶ + (1 + e)ݓଵ݈ଵ   

cଶ = ଴ܶ + (1 − t)wଶ݈ଶ 
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Where T଴ represents a demogrant, A is the unemployment benefit, e is the linear EITC and t is the linear 

income tax which we will assume is given.3 While individual 0 has no choice, individuals 1 and 2 will maximize 

equation 1 subject to budget constraints 3. Let us start with the solution of individual 3: 

(4) F. O. C.:   
୵మ(ଵି୲)

୵మ(ଵି୲)୪మ
=

ஔమ

ଵି୪మ
 

And it is easy to show that his labor supply is: 

(5) lଶ =
ଵ

ଵାஔమ
 

It is well-known empirically that the labor aversion parameter for high-income individuals is very low. For 

simplicity we shall assume that δଶ = 0 and consequently labor supply of the rich individuals is inelastic: lଶ =

1. By a similar technique we obtain the labor supply for individual 1: 

(6) lଵ =
ଵ

ଵାஔభ
ቂ1 −

ஔభ୘బ

୵భ(ଵାୣ)
ቃ 

Note that in order to participate at the labor market individual 1 needs to obtain a wage that is higher than 

his threshold wage (including the EITC) which can be derived using the last term of equation 6: 

ଵ(1ݓ  (7) + ݁) > ଵߜ ଴ܶ;    

When ߜଵ is low, the working poor participates at the labor market even if his hourly wage is low and e=0.  

This means that theoretically the working poor could have an income that is lower than the one obtained by 

the unemployed (who gets A in addition). As discussed by Saez (2002), this would be the case of a deserving 

working poor, who would be favored by a conservative government and clearly would receive an EITC. Note, 

however, that by not participating at the labor market he/she would be able to receive a higher transfer from 

                                                           
3 The optimal linear and non-linear income tax has been extensively characterized. For a survey see Diamond and Saez 
(2011). The implicit assumption is that there is a tax threshold, and consequently the working poor does not pay income 
tax since his/her wage is below the threshold. 
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the government ( ଴ܶ +  ,and consequently it would be better for him/her to remain unemployed. Thus , (ܣ

the benchmark case shall be based on a representative working poor with a higher ߜଵ which implies by 

equation (7) that he has a higher wage.4 Summarizing, the benchmark (and realistic) assumption for this case 

requires that the income of the working poor without an EITC is equal to the one of the unemployed – in 

order to resemble a situation of indifference.5  

The Government 

Government redistributes income in order to obtain a maximal social welfare. The government budget 

constraint is: 

(8) T = twଶ = 3T଴ + A +  ewଵlଵ 

While a more general optimization would avoid assuming that ݈ଶ is given, we will solve this case in the next 

sections. In this section, given that labor supply of high-income individuals is fixed, we assume for simplicity 

that tax revenues T are also given. Note that since t and labor supply of the third individual are given, he/she 

will not take part at the government maximization. While this assumption is clearly arbitrary, it allows 

concentrating the government dilemma on re-distribution among the poor: the government decision is to 

transfer money from the high-income individual either to the unemployed or to the working poor.  We 

assume that the government chooses e optimally for a given A. The maximization problem is: 

(9)  MAXୣ   W =  ∑ ୙౟
భష౬

ଵି୴
ଵ
୧ୀ଴   

In equation 9, W is the social welfare function and v represents the inequality aversion parameter. For 

simplicity, we will assume that since the government does not see the realization of labor, U will be based 

                                                           
4 As discussed by Saez, in the general model if an EITC is optimal for this individual, it would clearly be optimal also in the 
case of a lower wage, because his/her social weight would be even higher. 
5 In the simulation we use a case in which the working poor income is slightly higher. 
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only on consumption. This assumption is consistent with governments' discourse, which stresses poverty 

alleviation as measured by income or consumption (i.e., governments do not put a weight on leisure).6 By 

substituting equation 8 in the individuals' solution and taking the F.O.C. that results from the maximization 

problem stated in 9, we can calculate the optimal e.  

F.O.C.: 

൝ln ൥wଵ ൭
1

1 + ଵߜ
൬1 −

ଵߜ ଴ܶ

ଵ(1ݓ + ݁)
൰൱ (1 + e) +

T − A − eݓଵ݈ଵ

3
൩ൡ

ି୴
ଵݓ (1 + (ଵߜ − ଵ݈ଵݓ 3⁄⁄

ቂwଵ݈ଵ(1 + e) +
T − A − eݓଵ݈ଵ

3 ቃ
= 

൜ln ൤
T − A − eݓଵ݈ଵ

3
+ ൨ൠܣ

ି୴ 3
ܶ − ܣ − ଵ݈ଵݓ݁ + ܣ3

ଵ݈ଵݓ

3
 

Note that the first term in the LHS represents social marginal utility of the working poor, multiplied by the 

marginal effect of the EITC divided by his income. In the terminology used by Saez (2002), the nominator 

includes both a behavioral effect (enhancement of labor supply) and a mechanical effect (loss of 

demogrant). In the RHS we only see, beyond the social marginal utility of the unemployed divided by his 

income, the mechanical effect - that is related to the reduction of the demogrant. The difference 

compared to Saez's framework is that in our case we get straightforward the final result - which does not 

depend on elasticities.  We can re-write this condition in the following way: 

(10)   

൜ln ൤wଵ݈ଵ(1 + e) +
T − A − eݓଵ݈ଵ

3
൨ൠ

୴

= ൜ln ൤
ܶ − ଵ݈ଵݓ݁ − ܣ

3
+ ൨ൠܣ

୴ ܶ − ܣ − ଵ݈ଵݓ݁ + ܣ3

ቀwଵ݈ଵ(1 + e) +
T − A − eݓଵ݈ଵ

3 ቁ
൤

ଵݓ

(1 + ଵ)݈ଵߜ
−

1
3

൨ 

                                                           
6 Note also that this assumption implies a departure from Mirlees's (1971) framework, where social welfare accounts also 
for leisure.  
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The advantage of this analysis is that we get a tractable F.O.C. that allows checking whether the EITC is 

optimal.  Since the incomes of the working poor and the unemployed are equal, the LHS equals the first 

term of the RHS, and the second term of the RHS equals 1. Thus, the optimality of the EITC depends on 

the third term – which must be higher than 1. The intuition of the third term is the following: an extra 

dollar allocated to the EITC increases income by the positive term, while at the same time the working 

poor loses a third of a dollar through the demogrant. Thus, when the behavioral reaction is strong enough, 

an EITC is optimal. Note that the first component of this term is positive and higher than 1 (since the 

nominator is higher than 1 and the denominator is lower than 1). Note also that for plausible parameters, 

this term is higher than 1 and consequently the RHS>LHS for e=0.7 The single way to restore the equality 

is by imposing an EITC (e>0).  

We use equations 6, 8 and 10 to prove four important results that will be characterized in the next section 

using simulations in a more realistic framework: 

Result 1: If an EITC is optimal, increasing inequality aversion results in a lower EITC. 

To obtain this result note that if the EITC is optimal the left hand side (LHS) of equation 9 equals the right 

hand side (RHS). When v goes up the LHS becomes lower than the RHS. The way to restore the equality is 

by reducing e. 

Result 2:   If an EITC is optimal, a reduction in labor aversion results in a lower optimal EITC.  

As explained by Regev and Strawczynski (2015), a reduction in labor aversion may result as a consequence 

of a successful "From welfare to work" government policy, which makes this question particularly 

interesting. While in that paper the result was inconclusive (EITC can be higher or lower depending on 

different scenarios), note that in the present context the result is defined and it implies a reduction of the 

                                                           
7  The denominator equals ቂ1 −

ஔభ୘బ

୵భ(ଵାୣ)
ቃ which is lower than 1. For the parameters shown in the simulation this term 

equals 1.47. If in addition ݓଵ is higher than 1 as assumed in the simulation, the last term of the RHS in 10 is significantly 
higher than 1.  
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EITC. This result is implied by the fact that the working poor works more, which implies an increase in his 

income. Thus, it is clear that after this change LHS<RHS. Restoring the equality requires a lower e. 

Result 3: If an EITC is optimal, increasing the resources available to the government results on a higher 

EITC. 

Also here an optimal EITC implies that the departure is when LHS equals the RHS. For the same labor 

aversion parameters, when we allocate all the money to the demogrant, the RHS>LHS. This means that 

we shall reallocate some money to the EITC, in order to restore the equality.    

Result 4: If an EITC is optimal, increasing the unemployment benefits results on a higher EITC. 

Note that an increase of unemployment benefits causes that the LHS<RHS. In order to restore the equality 

the EITC must go up. 

In order to characterize these results we perform a simulation and calculate the optimal linear EITC. 

Results are shown in Table 1. 

Table 1 

Scenario ࢒૚ ࢀ૙ e (%) 

Benchmark:  

ଵݓ = 2.2; ܶ = ଵߜ ;3 = 0.4; ܣ = 1.6; ݒ = 2 

0.68 0.351 0.350 

Higher inequality aversion: 

ଵݓ = 2.2; ܶ = ଵߜ ;3 = 0.4; ܣ = 1.6; ࢜ = ૜ 

0.68 0.378 0.266 

Lower labor aversion: 

ଵݓ = 2.2; ܶ = ૚ࢾ ;3 = ૙. ૛; ܣ = 1.6; ݒ = 2 

0.74 0.380 0.260 

Higher Government Budget Resources: 

ଵݓ = 2.2; ࢀ = ૜. ૛; ߜଵ = 0.4; ܣ = 1.6; ݒ = 2 

0.68 0.403 0.392 
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Higher Unemployment Benefits: 

ଵݓ = 2.2; ܶ = ଵߜ ;3 = 0.4; ࡭ = ૚. ૡ; ݒ = 2 

0.69 0.248 0.455 

 

The results of the simulation show that the optimal linear EITC is 35 percent, while the optimal transfer to the 

unemployed is 0.351 which represents 16 percent of the income of the working poor. The results of the 

sensitivity analysis are in line with the results shown above: higher inequality aversion and lower labor 

aversion derive in a lower optimal linear EITC and a higher demogrant, while higher resources and higher 

unemployment benefits imply both a higher EITC (the former imply a higher demogrant while the latter a 

lower one). 

3. The optimal piecewise linear EITC 

Previous papers that characterized the optimal EITC are Liebman (2002) and Lehman et al. (2011) . Liebman 

(2002) found that social inequality aversion is a crucial parameter for justifying the implementation of an EITC. 

Lehman et al. (2011) found that the inexistence of unemployment increases the optimality of an EITC, which 

would be optimal also with a Rawlsian social planer. Note that these papers did not analyze the optimality of 

particular types of schedule, as used in reality. In particular, in this paper we ask whether the optimal schedule 

is a triangle or a trapezoid as implemented in real life by most countries (U.S.A., U.K. and Israel). 

3.1 Simulations Methodology 

We further develop Saez’s general equilibrium formula, by allowing at the optimum that the size of the bottom 

4 wage groups depends on the tax rate. For this purpose we assume that the extensive margin elasticities in 

the bottom 4 wage groups are larger than zero, which is a necessary (but insufficient) condition for obtaining 

a wage subsidy in the bottom 3 wage groups. This framework allows for an optimal EITC trapezoid, as explained 

later. A detailed description of our methodology can be found in Appendix 1. It is important to note that once 

our iterative approach is adopted, the resulting EITC levels that are obtained in equilibrium are substantially 
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smaller than those reported by Saez (2002). The intuition for this result is simple – as redistribution occurs, 

consumption levels (and the resulting social weights) become more equal, which makes redistribution less 

appealing for the central planner.  

3.2 The optimal piecewise EITC schedule 

We proceed with simulations for the case where the extensive margin elasticities in the bottom 4 wage groups 

are larger than zero. We initially use, for all relevant parameters (i.e. the extensive and intensive margin 

elasticities, and the government’s redistributive tastes) the same range of values used in Saez (2002). In that 

respect, a key result of the Saez's (2002) model is that an EITC subsidy is optimal when the extensive margin 

elasticity is high. Thus, since our interest is in the optimal shape of the EITC schedule, we shall focus on the cases 

where  η = 0.5 and  η = 1 . Furthermore, as EITC subsidies are obtained in the presence of relatively low 

intensive margin elasticities, which correspond to the ones that are accepted as realistic, we shall focus in our 

simulations mainly on those cases (e.g.  ζ = 0.25, ζ = 0.05).8 Thus, under these conditions, which favor an EITC 

subsidy, we shall examine how the shape of the optimal  EITC  varies with different values of parameters of 

interest, such as the central planner’s redistributive tastes (v), the intensive margin elasticity and the distribution 

of wages among the working poor.  

An important aspect that must be taken into account is that the initial share of unemployed individuals and the 

distribution of wages of the working poor can vary substantially between countries, and the optimal tax schedule 

for country A (all else being equal) is not necessarily suitable for country B. Thus, for the generality of the analysis 

we run the same simulations over a range of wage distributions, with different levels of income inequality among 

the working poor, and different levels of (pre-tax) unemployment. We will re-visit this characteristic in the next 

section by estimating the wage distribution using empirical data. 

                                                           
8 Gruber and Saez (2002) show that real life intensive margin elasticities for low wage groups are particularly low. 
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If our target population is, say, the bottom 60%9 of the working age population (the unemployed and the working 

poor), we can divide the working poor into 5 groups with a predetermined pre-tax size. For example, if prior to 

redistribution, the unemployed accounts for 10% of the population then, prior to redistribution the bottom four 

wage groups each account for 12.5% of the working age population. Or, if prior to redistribution the unemployed 

accounts for 20% of the working age population, then the bottom 4 wage groups would each (initially) account 

for 10% of the working age population10. Specifically, we explore in the benchmark case the cases where the initial 

share of the unemployed, is either 5%, 10%, or 20%11.  

3.2.1 Benchmark case 

We start from a benchmark wage distribution - the actual distribution of non-student working age (25-64) 

population in Israel in 2014.  The non-employed account for about 22% of this population - and by construction 

the lowest wage group accounts for 8% of this population, and groups 2-4 account for 10% each. The wage 

distribution ratio in the four bottom wage groups with respect to the bottom wage group is 1, 2.18, 2.90, and 

3.55, respectively. Figure 1 shows for different levels of inequality aversion (v), the cumulative subsidy/tax that is 

obtained in each wage group, as a share of the bottom group’s pre-subsidy wages; the simulations are performed 

using an extensive margin elasticity of η = 1, and an intensive margin elasticity of ζ = 0.25. For the simplicity of 

the benchmark analysis, we initially assume that each of the 4 lowest wage groups has the same extensive margin 

elasticity ηଵିସ = 1, and the same intensive margin elasticity ζଵିସ = 0.25.12 

As shown in figure 1, in all levels of inequality aversion, wage groups 2-4 do not receive a wage subsidy but rather 

pay a tax; i.e., under the conditions specified above, the subsidy turns into a tax (in absolute terms) from the 

                                                           
9 In Israel for example, about 60% of the non-student working age population, are either not employed or earn less than 
8000 NIS – which is currently the income level in which EITC eligibility is canceled out. 
10 It is important to recall that these initial group sizes will later change, as a reaction to the adopted tax schedule.  

11 Simulations for cases where the initial share of the unemployed is larger than 20% are less instructive, because the social 
weight of the unemployed is quite high and thus the EITC becomes a less appealing tool for the central planner.   
12 We shall later explore more complex cases where the intensive margin elasticity differs between wage groups. 
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second wage group on. The phasing out of the second group is steep – which means that the optimal schedule 

looks like a triangle and not as a trapezoid.  Note however, that since the actual wage distribution is continuous 

(rather than discrete) there would always be a wage range in which the (gradual) phasing-out of the subsidy 

occurs. Nonetheless, an important insight that can be drawn from this discrete analysis is that when the wage 

level of the second lowest group is substantially higher than that of the bottom wage group – then a wage subsidy 

for the second wage group (and on) is usually not an optimal policy. In the Israeli case, the wage ratio between 

wage groups 1 and 2 is 2.18, and thus the 2nd group’s wages are not subsidized.  

Figure 1 
 

 

3.2.2 Sensitivity to the extensive margin  

In our benchmark case, very low EITC subsidies were obtained for the lowest wage group, and from the 2nd group 

on, there was no entitlement to a subsidy and a tax was payed. This result was obtained under the benchmark 

assumption of an exogenous extensive margin elasticity η = 1. Recalling Saez's (2002) analysis, we know that an 

EITC subsidy is more likely to be obtained when the extensive margin elasticity is high (e.g.  η = 1). Thus, it is not 
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surprising to see (figure 2) that given a lower extensive margin elasticity  η = 0.5, there is practically no EITC 

subsidy for neither wage group – even when inequality aversion (v) is very low.  

Figure 2 
 

 

This case (η = 0.5) is less interesting in the context of characterizing the shape of the optimal EITC trapezoid, and 

we shall therefore proceed with η = 1 in all other simulations. This assumption seems plausible also from an 

empirical point of view.13 

 

3.2.3 The intensive margin  

Despite the results shown above, there are specific conditions under which the second wage group is not taxed, 

despite the presence of high wage gaps between groups 1 and 2. Figure 3 shows the optimal cumulative 

subsidy/tax in each wage group, when all conditions are similar to those described in figure 1, except for the 

intensive margin elasticity, which is significantly lower: ζଵିସ = 0.05. As evident in figure 2, when both the 

                                                           
13 Brender and Strawczynski (2006) show that in Israel extensive margin elasticities are higher for particular groups like 
Arab women. 
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intensive margin elasticity and the level of inequality aversion (v) are very low, than the second lowest wage group 

is not taxed, despite the large wage gaps relative to the bottom wage group. 

 
 

Figure 3 
 

 

In general the optimal tax schedule is flatter when inequality aversion is low. This is not surprising, given that 

under lower inequality aversion less redistribution is required and tax rates are therefore relatively low. However, 

as evident in figures 1 and 2, the EITC subsidy for the bottom wage group is highest when the level of inequality 

aversion is 0.5. A higher level of inequality aversion (e.g. v=1) or a lower level (e.g. v=0.25) yields a smaller EITC 

subsidy for the bottom wage groups. The intuition here is that when inequality aversion is very low, there is no 

need for much redistribution and consequently the EITC subsidy is small; and when inequality aversion is very 

high, the social weights of the non-employed are high relative to the working poor and thus a large lump-sum 

transfer is preferred over an EITC subsidy. 

3.2.4 The effect of non-employment rates on the shape of the optimal EITC trapezoid 
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Another important aspect that affects its shape is the share of non-employed individuals in the population. As 

intuitively implied from Saez's (2002) analysis, the lower is non-employment the higher the attractiveness of the 

EITC for the central planner.  In figure 4 we employ conditions that favor more an EITC trapezoid: Non employment 

is reduced to 10%, and the wage distribution ratio in the four bottom wage groups with respect to the bottom 

wage group is 1, 1.21, 1.4, and 4 – yielding (within those 4 groups) a Gini coefficient of 0.302. As evident in figure 

4, this setup – a relatively even wage distribution for the bottom 3 groups, with a discrete jump in the wages of 

the fourth group – yields a flat and wide EITC trapezoid (which differs from the triangle shaped EITC schedules 

that obtained in the previous examples). 

Figure 4 
 

 

Figure 5 shows the optimal EITC schedules for similar conditions of those discussed in figure 4, with the exception 

of initial share of non-employed individuals, which was changed from 10% to 5%. Accordingly, the extra 5% of 

working individuals were equally distributed in the bottom 4 wage groups.  

Compared to figure 4, the EITC triangles/ trapezoids in figure 5 are taller and cover a wider income range; i.e., 

when non-employment is lower, the EITC subsidy is higher, and a larger share of the working poor receives it. 
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When visually comparing figures 4 and 5, it is easy to see that in figure 5 (lower non-employment) all of the 

tax/subsidy schedules were simply shifted upwards.  
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Figure 5 
 

 

Note that in all these cases the optimal schedule resembles a triangle. We turn now to the characterization of an 

optimal trapezoid. 
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when inequality aversion is high, there is a stronger tradeoff (regarding the EITC subsidy) between the non-

employment rate and the intensive elasticity. When v=1, for instance, low-non employment rates make an EITC 

subsidy optimal, even if the working poor’s intensive margin elasticity is very high. In contrast, when inequality 

aversion is low (v=0.1), this tradeoff is much weaker, and an EITC subsidy is optimal only when the intensive 

margin elasticity is relatively low.   

Figure 6  
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In actual EITC systems the usual case is a trapezoid. However, we have seen in the previous sub-section that in 
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subsidy is a necessary but insufficient condition for a trapezoid shaped tax schedule. Given a negative marginal 

tax rate for the lowest wage group, the marginal tax rate for the 2nd lowest wage group can be either positive, 

zero (or very close to zero), or in some extreme cases even negative. 

As we have shown in figures 1 and 2, in the presence of high wage gaps between the two bottom wage groups, 

the 2nd lowest wage group would (in most cases) pay a tax and not receive an EITC subsidy. Thus, when one’s 

aim is to characterize the optimal shape of the EITC trapezoid, such a case is somewhat less instructive. It is 

therefore useful to examine cases in which the pre-tax wage gaps between the 1st, 2nd and 3rd lowest wage 

groups are lower, and an EITC trapezoid is more likely to be obtained. 

Figure 6 shows the optimal schedules for two different levels of inequality aversion, in two different wage 

distributions of the bottom four groups. In one case the wage distribution ratio in the four bottom wage groups 

with respect to the bottom wage group is 1, 1.5, 2, and 3.55, respectively. And in the other case the wage 

distribution ratio in the four bottom wage groups with respect to the bottom wage group is 1, 1.2, 1.4, and 4, 

respectively. In both cases the non-employed account for 10% of this population – and the four bottom wage 

groups account for 12.5% each; the extensive margin elasticity is η = 1, and the intensive margin elasticity is ζ =

0.05. As can be seen, when the wage ratio between the two bottom wage groups is smaller, an EITC subsidy for 

the 2nd wage group is more likely. Furthermore, for low levels of inequality aversion (e.g. v=0.1), the EITC 

schedule takes the familiar shape of a (flat) trapezoid - with a negative marginal tax for the bottom wage group; 

approximately zero marginal tax for the 2nd lowest wage group; and a positive marginal tax for the 3rd lowest 

wage group, which phases-out the subsidy to (approximately) zero. 

The comparison between the two cases shows that in the latter - , where wage gaps between the bottom 3 groups 

are very small, but the wage gap between the fourth group and the third group is substantially larger -   positive 

EITC subsidies are obtained not only for the two lowest wage groups but also for the 3rd group (when inequality 

aversion is low). This subsidy is completely phased out and turns into a high tax from the 4th group on. This result 
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is driven by the large wage gap between the 4th group and the 3rd group. Since wage gaps between the bottom 

3 groups are small, the phasing-stage is “shifted” towards the 4th group - that (due to its relatively high wages) 

can be taxed to allow for the redistribution of resources to the bottom 3 groups.  

Figure 6 
 

 

Note that when wage gaps in the bottom groups are small the EITC trapezoid is flatter and wider. 
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– we are able to give a close estimate of the welfare loss associated with the (suboptimal) use of an EITC trapezoid. 

Note that since this exercise altered (mechanically) the tax rates for groups 2 and 3, the average tax rates of the 

higher wage groups (and group 4 in particular) must also be adjusted in order to avoid a situation where the 

resulting marginal tax rate for group 4 is higher than 1 - which is of course irrational, since it would create a 

disincentive to work. Thus, in the trapezoid case the average tax rates of groups 4-8 were lowered (as shown in 

figure 7) to insure marginal tax rates that are lower than 1. Note that in the trapezoid case the lower tax rates for 

groups 2 and 3 yield higher participation rates and a lower level of non-employment. In other words, in the 

trapezoid case, more individuals work and more money is earned, but fewer taxes are being collected. Thus the 

level of guaranteed income (and the consumption level of the non-employed) is lower. As in Saez (2002), we 

assume that apart from redistributive transfers the government must also finance, through taxes, a public good. 

Since the population size is normalized to 1, this means that (in the triangle case) out of a total of 6,042 NIS of 

collected taxes, 2300 NIS go to the public good and the remaining 3742 NIS go to redistribution as guaranteed 

income (T଴). In the trapezoid case however, only 4095 NIS are collected, and thus only 1795 NIS go to 

redistribution.  

Figure 7: Triangle vs. Trapezoid 
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  The tradeoff in these two cases is between more redistribution (triangle), and more employment and 

earnings (trapezoid). To compare the aggregate social welfare of these two cases we compute the respective sum 

of products of the social weights (g୧), the consumption levels (c୧), and groups’ share in the population (h୧). This 

yields, for the triangle case, an aggregate social welfare of 5158, compared to 4754 in the trapezoid case. In other 

words, given plausible parameters, the aggregate social welfare is 8.5% higher in the triangle case.  Given a high 

enough level of inequality aversion (v=1), the “price” of a lower guaranteed income (in social welfare terms), can 

be higher than the gains of increased employment. Note however, that this result depends heavily on the 

assumption that there is a fixed budget constraint for redistributive purposes and the EITC subsidy comes at the 

expense of the guaranteed income; i.e., the trapezoid might still be preferable over the triangle if the loss of tax 

revenue is not deducted from the funds allocated to guaranteed income transfers. For example, if the increased 

employment levels and additional earnings of the working poor would result in higher levels of consumption – 

then the increased amount of indirect taxes collected might offset the lower revenues from direct taxes.  

We have so far seen how differences in lower-end wage distributions and in non-employment rates can 

significantly affect the shape of the optimal EITC. It might therefore be a useful exercise, to examine to what 

extent these factors vary between countries, and within countries over time. 

4. An empirical approximation to the optimal EITC 

4.1 Estimating the Income distribution 

The Pareto log-normal (PLN) and the double Pareto log-normal (DPLN) distributions have been shown to be good 

approximations for income distributions (Reed and Wu 2008).  The pdf and the cdf for the PLN distribution are 

given by Colombi (1990) and Griffiths and Gholamreza (2012). 

11)  f ୔୐୒(y; m, σ, α) =
α
y

ϕ ൬
lny − m

σ
൰ R(xଵ) 
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12)  F୔୐୒(y; m, σ, α) = Φ ൬
lny − m

σ
൰ − ϕ ൬

lny − m
σ

൰ R(xଵ) 

And the pdf and cdf for the DPLN distribution, which was developed by Reed (2003) and Reed and Jorgensen 

(2004), are also given in Griffiths and Gholamreza (2012): 

13)  f ୢ୔୐୒(y; m, σ, α) =
αβ

(α + β)y
ϕ ൬

lny − m
σ

൰ ሼR(xଵ) + R(xଶ)ሽ 

14)  Fୢ୔୐୒(y; m, σ, α) = Φ ൬
lny − m

σ
൰ − ϕ ൬

lny − m
σ

൰ ቊ
βR(xଵ) − αR(xଶ)

α + β
ቋ 

Where R(t) = ሾ1 − Φ(t)ሿ/ϕ(t) is a Mill’s ratio, ϕ(. ) and Φ(. ) are, respectively, the pdf and cdf for a standard 

normal random variable,  

xଵ = ασ −
୪୬୷ି୫

஢
  and xଶ = βσ +

୪୬୷ି୫

஢
 

Data and Empirical analysis 

Using these specifications and sample based estimates for m  and for σ we derive approximations for income 

distributions for 11 countries and compare them to the actual sampled distributions. These countries are Israel, 

US, GBR, Germany, Spain, Brazil, Colombia, Uruguay, Russia, Denmark and Finland. For all countries, data was 

extracted from the Luxemburg Income Survey (LIS) database – which allows for a relatively harmonious 

comparison. For each country the latest available LIS data was used (which in most cases corresponds to 2013).  

Deriving estimates for actual income distributions 

Estimates for the actual income distributions in each country were derived as follows: the annual incomes of the 

bottom 97% wage earners were arbitrarily divided into 49 equal wage intervals and, where the bottom interval 

ranges from zero to ଵ

ହ଴
∙ Wଽ଻୲୦ ୮ୣ୰ୡ୬୲୧୪ୣ and the top interval is unbounded and ranges from ସଽ

ହ଴
∙ Wଽ଻୲୦ ୮ୣ୰ୡ୬୲୧୪ୣ to 

infinity (in theory). Where Wଽ଻୲୦ ୮ୣ୰ୡ୬୲୧୪ୣ is the income of the top earner in the 97th percentile. This specification 
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was required in order to obtain wage intervals of reasonable size. Wages are bounded at the bottom but not at 

the top and thus an unbounded specification would have yielded wage intervals that are too large to provide any 

useful insight.  

Deriving PLN and DPLN approximations for income distributions  

In order to derive PLN and DPLN approximations for the income distribution of each country, sample estimates 

were obtained for m and σ, the first and the second moment of the (log-normalized) income distribution. Note 

that these parameters were computed for the entire sample of wage earners (not omitting the top 3 percent), in 

order to account for the Pareto behavior at right tail of the distribution. Once m and σ are obtained the 

distributions’ approximation is quite straightforward.  

Using (12) and (14), the cumulative share of wage earners in each of the 50 wage brackets was approximated – 

which allowed (by simple subtraction) the computation of the relative share of wage earners in each of the 50 

cohorts. Since α and β are initially unknown, they are computed via an iterative algorithm which minimizes the 

root mean of squared errors between the observed and approximated relative shares (c୧ and cො୧). I.e. between the 

(binned) sampled distribution and the PLN/dPLN approximated distribution. Note that by minimizing the sum of 

square errors of the relative share of wage earners, (rather than the sum of square errors of the relative income 

shares s୧ and sො୧), we are aiming for the best fit relative to the distribution of wage earners (and not relative to the 

distribution of income). It is of course possible to minimize the sum of errors relative to the distribution of income 

but such a design would give excess weight to discrepancies in higher income levels and little weight to 

discrepancies at low income levels – which is undesirable for our purposes given that the focus population in this 

paper is the working poor. 
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Since the observed income distributions are computed from sample surveys, with sample sizes varying between 

countries (but generally in the range of 10K-20K observations14), the number of bins chosen to represent the 

observed income distributions can significantly affect the goodness of fit of the PLN and DPLN approximations. If 

too many bins are used than the observed sample data is too “noisy” and inaccurate to resemble a smooth 

distribution. This occurs (among other reasons) because sample data (which usually relies on self-reporting) tends 

to be bunched at round values. E.g., a survey participant who earns, say, 14,917 Dollars a year is likely to report 

that he earns 15,00015. This phenomenon, which is very visible in the data of each country, mandates that the 

number of bins would be small enough to allow for a relatively smooth (binned) observed distribution. On the 

other hand, if the number of bins is too small then much information is lost and thus the exercise is less instructive. 

The optimal balance can vary between countries, and depends on the size of the sample and the quality of the 

data. As noted, in our analysis, we used the same number of bins for each country, i.e. 50 bins. However, for 

Israel, for which we had data of slightly better quality16, we also experimented with different numbers of bins, 

and obtained a better fit with 20 bins. 

Figure 8 compares between the observed (binned) income distribution in Israel 2014, to the approximated DPLN 

distribution that was computed using the (log-normalized) sample mean and standard deviation. As can be seen, 

in most bins (cohorts) the observed frequency and the approximated frequency are very similar. An exception is 

the second cohort where the observed frequency is about 11% while the DPLN approximated frequency is about 

16%. This Discrepancy is mainly due to bunching of the actual income distribution at the point of minimum wages. 

Thus many wage earners who would otherwise fall into the second cohort (2000 to 4000 NIS), fall into the 3rd 

cohort (4000 to 6000 NIS) as minimum wages in 2014 stood at 4300 NIS.  

                                                           
14 The US is an exception in that respect as sample size stands at over 56,000 observations. 
15 Note that bunching at round values is also the result of the actual tendency of global salaries to be round sums. 
16 While sample data for all countries was obtained from the LIS database, the data for Israel was taken directly from the 
2014 expenditures (and incomes) survey. That is in fact the same dataset which is later harmonized and used by LIS, but by 
using the original dataset we were able to obtain a cleaner and smoother income distribution, and for a later year (2014 
instead of 2012).  
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Figure 8 

 
The discrepancy (between observed and approximated frequencies) that is caused by the bunching at minimum 

wages, is even more pronounced when the approximation is derived from a simple log-normal distribution with 

no adjustments for the Pareto tails (Figure 9). 

Figure 9 

 
 

As evident in figures 10a and 10b, In the case of Israel, the PLN distribution was found to be the most suitable to 

adjust for this issue and derive a better fit. The root mean square error of the PLN approximation (from the 

observed distribution) was 0.99%, compare to 1.49% for the DPLN, and 1.68% for the log-normal approximation. 
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It is noteworthy that the superior performance of the PLN relative to the DPLN was also observed in most of the 

other countries that we examined. Interestingly these results differ from the results by Griffiths and Gholamreza 

(2012), who observed in 10 countries sample a slightly superior performance of the DPLN relative to the PLN. 

These differences might stem from the fact that Griffiths and Gholamreza (2012), examined the income 

distributions of developing countries while we examined mostly developed countries. Another possible 

explanation for these differences, is the fact that Griffiths and Gholamreza (2012) aimed to minimize the root 

mean square errors (RMSE) of income shares (s୧), while we, (due to our focus on low income groups), aimed to 

minimize the RMSE of the relative shares of wage earners (c୧). Indeed, our simulations also show that for the 

minimization of RMSE of (s୧), the DPLN’s performance is close and in some cases better than that of the PLN. 

Thus, a possible conclusion is that the PLN performs better when the distribution of wages is of interest, and the 

DPLN (might) perform slightly better when the distribution of income is of interest. 

Figure 10a 
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Figure 10b 

 

A further improvement of the fit of the PLN / DPLN approximations for Israel (given the issue of bunching at 

minimum wages) – can be obtained by using a slightly smaller standard deviation which yields a taller, narrower 

distribution, which better fits the spike of the observed distribution at minimum wage level. This adjustment was 

conducted through an iteration process which minimized the Chi-square values of the approximated distributions 

relative to the observed distribution. The best fitting (log-normalized) adjusted standard deviation (in the case of 

Israel) was found to be eight percent smaller of the actual (log-normalized) standard deviation that was observed 

in the sample. This adjustment produced in all cases slightly smaller mean square errors. Thus, the (adjusted) root 

mean square error of the PLN approximation (from the observed distribution) was 0.97%, compare to 1.41% for 

the DPLN, and 1.43% for the log-normal approximation. 

Additional challenges of the observed data 

As noted, survey based income data tend to be bunched at round values and at minimum wage level. 

Furthermore, the quality of the sampling might not always be optimal, due to methodological issues such as 

inaccurate measurement of income, false reporting and censoring at high values17. Clearly, these issues tend to 

reduce the goodness of fit of the (smooth) approximated distributions to the (noisy) observed distributions. Figure 

11 demonstrates this point by comparing the PLN approximated distribution of wage earners, to the sample based 

                                                           
17 Typically, data for extremely rich individuals are not included in income surveys in order to prevent possible recognition 
and exposure of sensitive information that concerns these (potentially) high profile individuals. 
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(N= 17,231) observed distribution of wage earners in Britain 2013. Both distributions are represented by 50 wage 

intervals (bins) of equal length. As evident, the sample based observed distribution is not very smooth and 

perhaps a smaller number of bins could improve the fit (with the cost of some loss of information). Furthermore, 

it appears that for Britain, just like Israel, the issue of bunching at minimum wage level is the one that most 

reduces the goodness of fit. This last point is an important one because it is a phenomenon that has so far been 

generally ignored when conducting PLN / DPLN approximations for income distributions. Perhaps, certain 

adjustments (such as the standard deviation adjustments described above), could further improve the goodness 

of fit of these approximations in the future. 

Figure 11 

 

Measures of goodness of fit 

Tables 2a and 2b present key statistics regarding the goodness of fit of the approximated PLN and DPLN 
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statistic that is based on the maximum difference between actual and approximated cumulative distribution. For 

all statistics presented, smaller values signify a better fit. In that respect however, it is important to note that the 

choice of number of bins has a substantial effect on the size of the statistics. Specifically, the larger the number 

of bins the smaller are the RMSEୡ and RMSEୱ. Thus, the relative goodness of fit of these approximations is only 

comparable when the number of bins is the same. As evident in Table 2a, for the PLN approximations the best 

goodness of fit is obtained for the GBR, closely followed by Israel with RMSEୡ values of 0.52 and 0.61 

(respectively). As explained above, these results stem not only from the resemblance of the observed income 

distributions in these countries to a Pareto Log-normal distribution – but also from the better quality of the 

sample data that was available for those countries. When comparing tables table 2a to 2b, it is evident that for 

most countries the RMSEୡ of the PLN is smaller (i.e. a better fit) than that of the DPLN. As for the RMSEୱ and KS 

statistics, one cannot say that the PLN outperforms the DPLN. In about half the countries the RMSEୱ and KS 

statistics of the PLN are smaller than that of the DPLN, and in the other half the opposite occurs. Using the RMSE 

criteria we conclude that the PLN is a better approximation and thus we will concentrate on it. 
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Table 2a 

Pareto log-normal approximations compared to observed distributions 

country year 
# of 
bins ܋۳܁ۻ܀  ܛ۳܁ۻ܀

K.S. 
 (λ=1) 

K.S. 
 (λ=1.2) 

α 

Israel 2014 20 0.99 1.25 0.059* 0.025** 8.6 
Israel adjusted (σ * 0.92) 2014 20 0.97 0.90 0.048** 0.020** 9.0 
Israel adjusted (σ = 0.75) 2014 20 1.22 0.87 0.033** 0.014** 11.0 

Israel 2014 50 0.61 0.55 0.106 0.044** 7.5 
Israel adjusted (σ = 0.75) 2014 50 0.49 0.39 0.082** 0.034** 8.0 

Israel 2012 50 0.75 0.66 0.117 0.049** 6.7 
US 2013 50 0.87 1.06 0.137 0.057* 6.5 

GBR 2013 50 0.52 0.60 0.121 0.051* 6.3 
Germany 2010 50 0.96 0.88 0.227 0.095* 3.4 

Brazil 2013 50 1.46 1.45 0.141 0.059* 8.0 
Colombia 2013 50 1.49 1.45 0.204 0.085* 3.3 
Uruguay 2013 50 0.80 0.91 0.141 0.059* 5.8 
Russia 2013 50 1.66 2.18 0.130 0.054* 8.0 
Spain 2013 50 0.83 0.70 0.236 0.098* 2.6 

Finland 2013 50 1.31 1.28 0.347 0.145 2.5 
Denmark 2010 50 1.46 1.39 0.374 0.156 2.6 

* Significant at 10 percent; ** significant at 5 percent. 

Table 2b 
Double Pareto log-normal approximations compared to observed distributions 

Country year 
# of 
bins ܛ۳܁ۻ܀ ܋۳܁ۻ܀ 

K.S. 
 (λ=1) 

K.S. 
 (λ=1.2) 

α β 

Israel 2014 20 1.49 0.96 0.056* 0.023** 8.6 7.3 
Israel adjusted (σ*0.92) 2014 20 1.41 0.62 0.048** 0.020** 9.0 7.6 
Israel adjusted (σ=0.75) 2014 20 1.13 0.59 0.030** 0.012** 4.2 6.2 

Israel 2014 50 0.73 0.43 0.092* 0.038** 7.3 7.3 
Israel adjusted (σ= 0.75) 2014 50 0.52 0.39 0.065* 0.027** 4.6 8.3 

Israel 2012 50 0.79 0.66 0.084* 0.035** 4.0 7.4 
US 2013 50 0.92 1.08 0.177 0.074* 2.7 6.5 

GBR 2013 50 0.56 0.65 0.108 0.045** 3.3 7.5 
Germany 2010 50 0.97 0.89 0.238 0.099* 2.2 6.4 

Brazil 2013 50 1.56 1.54 0.117 0.049** 4.6 7.1 
Colombia 2013 50 1.47 1.44 0.192 0.080* 2.7 7.9 
Uruguay 2013 50 0.84 0.91 0.150 0.063* 3.3 7.5 
Russia 2013 50 1.67 2.18 0.118 0.049** 4.8 8.4 
Spain 2013 50 0.84 0.70 0.249 0.104 1.7 5.1 

Finland 2013 50 1.36 1.27 0.352 0.147 1.8 6.5 
Denmark 2010 50 1.51 1.39 0.387 0.161 1.8 7.2 
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4.2 The impact of changes in PLN income distribution on the optimal EITC 

As previously shown by (Reed and Wu 2008), Colombi (1990) and Griffiths and Gholamreza (2012), and as also 

evident in figures 10-11, and from tables 2a and 2b, the PLN approximation  fits quite well observed distribution 

of wage earners. By taking advantage of this good fit, we aim to examine, in a generalized framework, how 

changes in income distribution affect the optimal tax schedule. For this end, we use adjust the PLN approximation 

for Israel's distribution of wage earners in 2014, to fit the framework of our simulations, which compute the 

optimal tax schedule on the guidelines of Saez (2002). This adjustment is quite straightforward. First, we set the 

number of bins in the PLN approximation, to match the number of income groups in the tax simulations - 8 wage 

groups (ℎଵ-ℎ଼), not including the non-employed (ℎ଴). We then adjust the pre-tax size of the approximated shares 

of wage earners (ܿ̂௜), to account for the fact that a portion of the population is always not employed18, by 

multiplying them by (a theoretical) pre-tax employment rate19 (1 − ℎ଴) so that:   ∀ ݅ > 0 → ℎ௜ = ܿ̂௜ ∙ (1 − ℎ଴).  

Once these adjustments are made, and the approximated sizes of hଵ-h଼ & wଵ-w଼ are known, we proceed with 

our simulations and compute the optimal tax schedule on the guidelines of Saez (2002). In the first simulation, 

we use the benchmark case in which the PLN approximation is based on the observed (log-normalized) mean and 

standard deviation of the Israeli income distribution in 2014, and the optimal α that was computed by iteration. 

This benchmark case represents an estimate for the (desired) optimal tax schedule for Israel in 2014.   

In the subsequent simulations we generate artificial PLN income distributions by making small changes in the 

parameters of interest,  μ, σ and α (one parameter at a time). Such an exercise is quite instructive as it enables us 

to determine, in quite general manner, how the optimal tax schedule changes, given, for example, a change (over 

time in the standard deviation, of a country's income distribution. We believe that this generalized framework 

can help simplify tax related policy-making, by providing relatively simple and implementable insights regarding 

                                                           
18 E.g. individuals with disabilities. 
19 In our simulations we use a default, pre-redistribution non-employment rate of (h଴ = 5%) - which, in the simulations’ 
post-tax equilibrium, yields plausible non-employment rates (that increase with inequality aversion). 
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the relationship between the evolution of a country's income distribution and the evolution of its tax schedule 

over time. 

Before performing the simulation let us motivate the discussion.  First, Pikety and Saez (2007) showed that one 

of the striking changes in the income distribution of developed economies is the increase of all types of income 

(wage, business income, capital income and capital gains), which more than doubled between 1960 and 2000 for 

the top 0.1 percent of the income distribution. In our analysis the increase of the right tail can be mimicked by an 

increase in  α.  Second, the UN (2012) analysis on income inequality shows20 that in most countries there was an 

increase in income inequality, which affect directly the wage earners in general and the working poor in particular. 

This change will be mimicked in our simulations by a change in  σ. 

We set the benchmark case to be ߙ଴ = 7 (instead of 8.6)21; with ߪ଴ = 0.875 and ߤ଴ = 8.944, corresponding to 

the mean and standard-deviation of observed (log-normalized) income distribution in Israel in 2014. Note that 

this benchmark case closely resembles the observed distribution. 

After computing the optimal EITC for this benchmark case, we proceeded by deriving PLN approximations for the 

following four cases:  ߙ = 0.9 ∙ ଴ߙ = 6.3 ; = 0.8 ∙ ଴ߙ = ߪ ; 5.6 = ଴ߪ ∙ 1.1 = ߪ ; 0.963 = ଴ߪ ∙ 1.2 = 1.050 . In each 

of these cases, only one parameter of interest was changed at a time, and the other parameters kept their 

benchmark values. Once we derived PLN approximations for these four (simulated) income distributions, we 

proceeded by computing for each distribution, the optimal tax schedule – following the guidelines of Saez (2002), 

as described above. Table 3 presents the optimal tax schedules and additional relevant statistics for the 

benchmark case and the four simulated distributions. As evident from the simulations results, a reduction in the 

size of  ߙ is different in essence from an increase in ߪ. The former increases the size of the right tail of the 

                                                           
20 United Nations (2012), Table 3.2. 
21 The best fitting α for the PLN approximation of Israel’s income distribution was quite high (8.6). Thus, a simulated increase 

in σ, would make the value of   xଵ = ασ −
୪୬୷ି୫

஢
  too high, which for low values of y, would make the inverse mills ratio R(xଵ) 

equal to zero – resulting in a discontinuous PLN approximation. The insights of the analysis are not affected by this small 
adjustment of the benchmark case. 
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distribution (i.e. the relative share of the rich increases) but slightly decreases the relative share of the left tail 

(the working poor); while the latter, increases the size of both tails – making the pdf shorter and wider. 

Furthermore, a 10% change in ߪ seems to have a much stronger effect on the shape of the distribution than a 

10% change in ߙ. As result, a 10% change in ߙ (relative to the benchmark distribution), barely affects the optimal 

tax schedule at equilibrium and the marginal tax rates are only very slightly lower than the benchmark case. In 

contrast, a 10% change in ߪ substantially, increases the marginal tax rate for the high and middle income groups, 

and to a lesser extent, for the low income groups. Consequently, it increases the total amount of taxes collected. 

This result is not surprising given the fact that an increase in the ߪ of the log-normalized distribution, increases 

the mean income of the actual distribution. It is however a bit surprising that an increase in ߪ slightly decreases 

the optimal EITC subsidy, despite the rise in inequality. This result is due to the larger share of the working poor, 

which raises the aggregate cost of the EITC subsidy. 

 

Table 4 shows the average amount of taxes collected, per worker and per person. This comparison provides a 

good measure of scale for the effect of the change in ߙ and in ߪ. While a 20% decrease in ߙ only depresses the 

sum of collected taxes by 2%, a 20% increase in ߪ increases the sum of collected taxes by 40.4%. 
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Table 3: Optimal tax schedules and relevant statistics for simulated PLN distributions, v=0.25 

Upper bound of wage interval 0 2000 4000 6000 8000 10000 12000 14000 ∞ 

group size before taxes  (hi) ℎ଴ ℎଵ ℎଶ ℎଷ ℎସ ℎହ ℎ଺ ℎ଻ ℎ଼ 
ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 5.0% 4.4% 13.2% 13.9% 11.8% 9.5% 7.6% 6.0% 28.6% 

ߙ :1 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.9 5.0% 4.3% 13.0% 13.7% 11.7% 9.5% 7.6% 6.0% 29.2% 

ߙ :2 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.8 5.0% 4.2% 12.6% 13.5% 11.6% 9.5% 7.6% 6.1% 30.0% 

ߪ :3 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.1 5.0% 5.9% 13.9% 13.1% 10.9% 8.7% 6.9% 5.6% 30.1% 
ߪ :4 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.2 5.0% 9.6% 12.1% 12.4% 10.0% 8.0% 6.4% 5.2% 31.3% 

group size after taxes (h'i) ℎ′଴ ℎ′ଵ ℎ′ଶ ℎ′ଷ ℎ′ସ ℎ′ହ ℎ′଺ ℎ′଻ ℎ′଼ 
ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 9.1% 6.0% 13.6% 11.3% 8.3% 9.5% 7.6% 6.0% 28.6% 

ߙ :1 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.9 9.1% 5.9% 13.3% 11.2% 8.2% 9.5% 7.6% 6.0% 29.2% 

ߙ :2 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.8 9.1% 5.7% 13.0% 11.0% 8.2% 9.5% 7.6% 6.1% 30.0% 

ߪ :3 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.1 9.0% 8.0% 14.2% 10.4% 7.2% 8.7% 6.9% 5.6% 30.1% 
ߪ :4 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.2 8.8% 12.8% 12.1% 9.2% 6.2% 8.0% 6.4% 5.2% 31.3% 

Average wage in group ݓ଴ ݓଵ ݓଶ ݓଷ ݓସ ݓହ ݓ଺ ݓ଻ ଼ݓ 
ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 17,060 

ߙ :1 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.9 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 16,470 

ߙ :2 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.8 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,820 

ߪ :3 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.1 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 19,200 
ߪ :4 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.2 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 23,600 

Marginal tax rate in group ݐܯ଴ ݐܯଵ ݐܯଶ ݐܯଷ ݐܯସ ݐܯହ ݐܯ଺ ݐܯ଻ ଼ݐܯ 
ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - -36.1% 13.9% 49.7% 59.0% 72.3% 75.0% 77.3% 39.0% 

ߙ :1 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.9 - -36.0% 13.9% 49.6% 58.8% 72.0% 74.6% 76.9% 38.0% 

ߙ :2 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.8 - -35.8% 13.9% 49.5% 58.5% 71.8% 74.3% 76.4% 36.7% 

ߪ :3 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.1 - -35.2% 14.7% 54.9% 64.4% 75.4% 78.3% 80.7% 41.8% 
ߪ :4 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.2 - -34.2% 17.8% 62.9% 71.6% 79.3% 82.2% 84.5% 46.4% 

Average tax rate in group ݐܣ଴ ݐܣଵ ݐܣଶ ݐܣଷ ݐܣସ ݐܣହ ݐܣ଺ ݐܣ଻ ଼ݐܣ 

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - -36.1% -2.7% 18.3% 29.9% 39.3% 45.8% 50.6% 47.9% 

ߙ :1 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.9 - -36.0% -2.7% 18.2% 29.8% 39.2% 45.6% 50.4% 47.8% 

ߙ :2 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.8 - -35.8% -2.7% 18.2% 29.7% 39.1% 45.5% 50.2% 47.8% 

ߪ :3 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.1 - -35.2% -1.9% 20.8% 33.3% 42.6% 49.1% 54.0% 50.1% 
ߪ :4 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.2 - -34.2% 0.5% 25.4% 38.6% 47.7% 53.9% 58.6% 53.2% 

Tax payed by average group member ଴ܶ ଵܶ ଶܶ ଷܶ ସܶ ହܶ ଺ܶ ଻ܶ ଼ܶ  
ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - (364) (82) 904 1,936 3,190 4,460 5,750 7,190 

ߙ :1 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.9 - (367) (81) 903 1,931 3,182 4,447 5,731 6,934 

ߙ :2 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.8 - (366) (80) 902 1,926 3,172 4,433 5,709 6,659 

ߪ :3 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.1 - (358) (58) 1,029 2,135 3,429 4,740 6,072 8,410 
ߪ :4 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.2 - (344) 15 1,255 2,442 3,778 5,132 6,505 10,876 

Average after-tax income from work ܿ଴ ܿ′ଵ ܿ′ଶ ܿ′ଷ ܿ′ସ ܿ′ହ ܿ′଺ ܿ′଻ ܿ′଼ 
ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - 1,382 3,086 4,050 4,541 4,926 5,281 5,605 7,827 

ߙ :1 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.9 - 1,385 3,085 4,051 4,547 4,936 5,298 5,630 7,567 

ߙ :2 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 0.8 - 1,384 3,084 4,053 4,554 4,949 5,317 5,659 7,270 

ߪ :3 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.1 - 1,376 3,061 3,919 4,283 4,612 4,909 5,174 8,387 
ߪ :4 ݊݋݅ݐ݈ܽݑ݉݅ݏ ∙ 1.2 - 1,361 2,985 3,681 3,882 4,150 4,385 4,589 9,589 
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Table 4: Average tax per person & per worker for simulated PLN distributions (given optimal EITC) 

  

average 
T per 
worker 

average 
T per 
person 

% 
change 
in T per 
worker 

% 
change 
in T per 
person 

ࢻ :࢑࢘ࢇ࢓ࢎࢉ࢔ࢋ࡮ = ૠ, ࣌ = ૙. ૡૠ૞, ࣆ = ૡ. ૢ૝ 3,599  3,271     

ࢻ :૚ ࢔࢕࢏࢚ࢇ࢒࢛࢓࢏࢙ ∙ ૙. ૢ 3,562  3,238  -1.0% -1.0% 

ࢻ :૛ ࢔࢕࢏࢚ࢇ࢒࢛࢓࢏࢙ ∙ ૙. ૡ           
3,525  

         
3,205  -2.1% -2.0% 

࣌ :૜ ࢔࢕࢏࢚ࢇ࢒࢛࢓࢏࢙ ∙ ૚. ૚           
4,086  

         
3,719  13.5% 13.7% 

࣌ :૜ ࢔࢕࢏࢚ࢇ࢒࢛࢓࢏࢙ ∙ ૚. ૛           
5,038  

         
4,594  40.0% 40.4% 

 

Figure 12 demonstrates (for v=0.25, ℎ଴ = 5%) the change in the shape of the EITC trapezoid, relative to the 

benchmark, given (simulated) changes in α and in σ. As evident, the size of the EITC subsidy granted to the 

lowest income group (ݓଵ), changes only very slightly given a change in α or in σ. However, the phasing-out 

stage becomes visibly steeper relative to the benchmark, after an increase in σ. Thus one can conclude that the 

EITC subsidy is quite robust to changes in the relative shares of income groups, but the phasing-out stage is 

more sensitive to such changes. 

Figure 12 
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5. Simulated increase in minimum wages 

In order to examine how the EITC schedule is affected by a rise in minimum wages, we take again as a benchmark, 

the case shown above, where  α଴ = 7, σ଴ = 0.875 and μ଴ = 8.944. Again, the level of inequality aversion  v =

0.25, and the pre-tax share of the non-employed was h଴ = 5%. We then simulate two simple scenarios, in which 

minimum wage has risen, and compute the (new) optimal tax schedules. In the first scenario we mimic the rise in 

minimum wage by transferring 5 percentage points from hଶ to hଷ. This change corresponds to a shift of workers 

from the second wage group to the third, following a rise in minimum wage, that brought their wages above the 

upper (wage) bound of the second group. In the second scenario we simply increase the average wage of the 2nd 

wage group by 1000 NIS (from 3000 to 4000). This change corresponds to a rise in minimum wage, such that the 

new wage does not surpass the upper (wage) bound of the second group. 

Table 5 presents the optimal tax schedules and additional relevant statistics for the benchmark case and the 2 

simulated scenarios. As evident, in both simulated scenarios of minimum wage rise, the optimal EITC subsidy is 

slightly higher than the benchmark case subsidy (36.1%). The highest subsidy (38%) is obtained in the first scenario 

(where there is a shift of workers from hଶ to hଷ) – compared to 37% in the second scenario (where wଶ rises by 

1000 NIS). However, the more substantial differences between these 3 cases are observed in the 2nd and 3rd 

wage groups. In both scenarios the marginal tax rate of the 2nd wage group rises relative to the benchmark case 

of 13.9%. Given a shift of workers from hଶ to hଷ the marginal tax rate of the 2nd group actually rises (to 16.4%), 

which can be a bit counter intuitive, but can be explained by the fact that the hଶ has shrunk – which makes its 

relative importance for the central planner smaller. More intuitive is the fact that a 1000 NIS rise in wଶ results in 

a rise in the marginal tax rate of the 2nd group (to 18.1%). This group now earns more and therefore more heavily 

taxed. But the most interesting differences between these scenarios are manifested in the 3rd wage group’s 

marginal tax rates. While in the benchmark case the marginal tax rate for the 3rd group is 49.7%, the two 

simulated cases yield opposite results. A shift of workers from hଶ to hଷ results in a decline of the 3rd groups 

marginal tax to 40.1%; while a 1000 NIS rise in wଶ raises the 3rd group’s marginal tax rate to 61%! The former 
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result is quite intuitive: there are less working poor (hଶ), and more medium-wage individuals (hଷ), and therefore 

the (effective) tax base is broader and a smaller marginal rate can be imposed. The latter result however, requires 

a more complex explanation. As noted, the (significant) rise in wଶ has allowed for higher marginal taxation, but 

to a limited extent – as a higher marginal tax rate to this group would make the phasing-out stage too steep and 

creating a distortion to work incentives. At the same time, the wage gap between the 2nd and 3rd groups has 

been cut by half – and consequently so has the tax bracket of the 3rd group. Thus, the 3rd group’s marginal tax is 

now higher (61%), but it is subject to this marginal rate only for a bracket of 1,000 NIS (from 4,000 to 5,000 NIS), 

compared to a bracket of 2,000 NIS before the rise in minimum wage. Consequently, the 3rd group’s average tax 

rate is actually lower than in the benchmark case – which makes sense as the 2nd group now bears a bigger share 

of the tax burden. 

Figure 12 presents the optimal EITC triangles for the benchmark case and the two scenarios described above 

(which simulate a rise in minimum wages). As evident, the size of the EITC subsidy is modestly affected by a rise 

in minimum wage but the phasing out stage becomes significantly steeper – especially for the case where  ݓଶ 

rises by 1000 NIS. 

Figure 12 
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Table 5: Optimal tax schedules and relevant statistics for simulated rise in minimum wage, v=0.25 

Upper bound of wage interval 0 2000 4000 6000 8000 10000 12000 14000 ∞ 

group size before taxes  (hi) ℎ଴ ℎଵ ℎଶ ℎଷ ℎସ ℎହ ℎ଺ ℎ଻ ℎ଼ 

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 5.0% 4.4% 13.2% 13.9% 11.8% 9.5% 7.6% 6.0% 28.6% 

 ℎଷ  5.0% 4.4% 8.2% 18.9% 11.8% 9.5% 7.6% 6.0% 28.6% ݋ݐ ℎଶ ݉݋ݎ݂ ݐℎ݂݅ݏ ݌݌5 :1 ݋݅ݎܽ݊݁ܿݏ

:2 ݋݅ݎܽ݊݁ܿݏ  ଶ 5.0% 4.4% 13.2% 13.9% 11.8% 9.5% 7.6% 6.0% 28.6%ݓ ݊݅ ݁ݏ݅ݎ ܵܫܰ 1000

group size after taxes (h'i) ℎ′଴ ℎ′ଵ ℎ′ଶ ℎ′ଷ ℎ′ସ ℎ′ହ ℎ′଺ ℎ′଻ ℎ′଼ 

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 9.1% 6.0% 13.6% 11.3% 8.3% 9.5% 7.6% 6.0% 28.6% 

 ℎଷ  9.3% 6.1% 8.4% 16.0% 8.5% 9.5% 7.6% 6.0% 28.6% ݋ݐ ℎଶ ݉݋ݎ݂ ݐℎ݂݅ݏ ݌݌5 :1 ݋݅ݎܽ݊݁ܿݏ

:2 ݋݅ݎܽ݊݁ܿݏ  ଶ 9.4% 6.1% 12.7% 11.7% 8.5% 9.5% 7.6% 6.0% 28.6%ݓ ݊݅ ݁ݏ݅ݎ ܵܫܰ 1000

Average wage in group ݓ଴ ݓଵ ݓଶ ݓଷ ݓସ ݓହ ݓ଺ ݓ଻ ଼ݓ 

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 17,060 

 ℎଷ  - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 17,060 ݋ݐ ℎଶ ݉݋ݎ݂ ݐℎ݂݅ݏ ݌݌5 :1 ݋݅ݎܽ݊݁ܿݏ

:2 ݋݅ݎܽ݊݁ܿݏ  ଶ - 1,000 4,000 5,000 7,000 9,000 11,000 13,000 17,060ݓ ݊݅ ݁ݏ݅ݎ ܵܫܰ 1000

Marginal tax rate in group ݐܯ଴ ݐܯଵ ݐܯଶ ݐܯଷ ݐܯସ ݐܯହ ݐܯ଺ ݐܯ଻ ଼ݐܯ 

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - -36.1% 13.9% 49.7% 59.0% 72.3% 75.0% 77.3% 39.0% 

 ℎଷ  - -38.0% 16.4% 40.1% 59.8% 72.0% 74.7% 77.1% 38.7% ݋ݐ ℎଶ ݉݋ݎ݂ ݐℎ݂݅ݏ ݌݌5 :1 ݋݅ݎܽ݊݁ܿݏ

:2 ݋݅ݎܽ݊݁ܿݏ  ଶ - -37.0% 18.1% 61.0% 58.5% 71.6% 74.4% 76.8% 38.4%ݓ ݊݅ ݁ݏ݅ݎ ܵܫܰ 1000

Average tax rate in group ݐܣ଴ ݐܣଵ ݐܣଶ ݐܣଷ ݐܣସ ݐܣହ ݐܣ଺ ݐܣ଻ ଼ݐܣ 

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - -36.1% -2.7% 18.3% 29.9% 39.3% 45.8% 50.6% 47.9% 

 ℎଷ  - -38.0% -1.7% 15.0% 27.8% 37.6% 44.4% 49.4% 46.9% ݋ݐ ℎଶ ݉݋ݎ݂ ݐℎ݂݅ݏ ݌݌5 :1 ݋݅ݎܽ݊݁ܿݏ

:2 ݋݅ݎܽ݊݁ܿݏ  ଶ - -37.0% 4.3% 15.7% 27.9% 37.6% 44.3% 49.3% 46.7%ݓ ݊݅ ݁ݏ݅ݎ ܵܫܰ 1000

Tax payed by average group member ଴ܶ ଵܶ ଶܶ ଷܶ ସܶ ହܶ ଺ܶ ଻ܶ ଼ܶ  

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - (364) (82) 904 1,936 3,190 4,460 5,750 7,190 

 ℎଷ  - (386) (51) 745 1,812 3,069 4,341 5,631 7,061 ݋ݐ ℎଶ ݉݋ݎ݂ ݐℎ݂݅ݏ ݌݌5 :1 ݋݅ݎܽ݊݁ܿݏ

:2 ݋݅ݎܽ݊݁ܿݏ  ଶ - (376) 172 777 1,817 3,068 4,334 5,620 7,040ݓ ݊݅ ݁ݏ݅ݎ ܵܫܰ 1000

Average After tax income from work ܿ଴ ܿ′ଵ ܿ′ଶ ܿ′ଷ ܿ′ସ ܿ′ହ ܿ′଺ ܿ′଻ ܿ′଼ 

ߙ :݇ݎℎ݉ܽܿ݊݁ܤ = 7, ߪ = 0.875, ߤ = 8.94 - 1,382 3,086 4,050 4,541 4,926 5,281 5,605 7,827 

 ℎଷ  - 1,404 3,053 4,217 4,701 5,083 5,438 5,762 7,999 ݋ݐ ℎଶ ݉݋ݎ݂ ݐℎ݂݅ݏ ݌݌5 :1 ݋݅ݎܽ݊݁ܿݏ

:2 ݋݅ݎܽ݊݁ܿݏ  ଶ - 1,395 3,819 4,184 4,694 5,086 5,447 5,777 8,027ݓ ݊݅ ݁ݏ݅ݎ ܵܫܰ 1000
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6. Summary and conclusions 

While the EITC is becoming a leading program for coping with poverty, its optimal design is still a subject that 

merits further analysis. In this paper we build a model for calculating the optimal linear EITC and run simulations 

for obtaining the optimal piecewise linear schedule. We prove that in the linear model and in the presence of 

unemployment, an increase in inequality aversion reduces the optimal EITC. Our simulations show that the 

optimal piecewise linear schedule is a triangle, instead of a trapezoid, as actually implemented in countries that 

adopted the EITC like the U.S. or Israel. Moreover, implementing a trapezoid is subject to a social welfare loss. 

An interesting extension is simulating the optimal EITC taking into account a realistic distribution of wages. By 

using data for several countries we show that the Pareto-lognormal distribution is a good approximation for the 

density of wages. By using Root Mean Squared Errors and Kolmogorov-Smirnov statistics we show that this 

distribution fits real data better than other distributions, like the double Pareto-lognormal distribution. By 

allowing changes in the parameters of the Pareto-lognormal distribution we obtained that changes in the share 

of the "very rich" have a lower impact on the optimal EITC than changes in the variance that affect the share of 

the working poor. 

Finally we check the impact of an increase in the minimum wage on the optimal EITC. Our simulations show that 

while the size of the EITC subsidy is modestly affected by a rise in minimum wage, the phasing out stage 

becomes significantly steeper. 

APPENDIX 1 

Recall Saez’s (2002) general equilibrium formula: 

T୧ − T୧ିଵ

C୧ − C୧ିଵ
=

1
ζ୧h୧

∙ ෍ h୨

୍

୨ୀ୧

൤1 − g୧ − η୨
T୧ − T଴

C୧ − C଴
൨ 

When η୧ > 0 ∀ i < 5, and η୧ = 0 ∀ i > 4, we receive the following set of equations: 
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Tଵ − T଴

Cଵ − C଴
=

1
hଵζଵ

∙ ൤(g଴ − 1)h଴ − hଵηଵ ∙
Tଵ − T଴

Cଵ − C଴
− hଶηଶ ∙

Tଶ − T଴

Cଶ − C଴
− hଷηଷ ∙

Tଷ − T଴

Cଷ − C଴
− hସηସ ∙

Tସ − T଴

Cସ − C଴
൨ 

Tଶ − Tଵ

Cଶ − Cଵ
=

1
hଶζଶ

∙ ൤(g଴ − 1)h଴ + (gଵ − 1)hଵ − hଶηଶ ∙
Tଶ − T଴

Cଶ − C଴
− hଷηଷ ∙

Tଷ − T଴

Cଷ − C଴
− hସηସ ∙

Tସ − T଴

Cସ − C଴
൨ 

Tଷ − Tଶ

Cଷ − Cଶ
=

1
hଷζଷ

∙ ൤(g଴ − 1)h଴ + (gଵ − 1)hଵ + (gଶ − 1)hଶ − hଷηଷ ∙
Tଷ − T଴

Cଷ − C଴
− hସηସ ∙

Tସ − T଴

Cସ − C଴
൨ 

Tସ − Tଷ

Cସ − Cଷ
=

1
hସζସ

∙ ൤(g଴ − 1)h଴ + (gଵ − 1)hଵ + (gଶ − 1)hଶ + (gଷ − 1)hଷ − hଷηଷ ∙
Tଷ − T଴

Cଷ − C଴
− hସηସ ∙

Tସ − T଴

Cସ − C଴
൨ 

To solve this set of equations we move from cumulative tax to average tax and rewrite the above equations: 

tଵ = 1 −
hଵ(ζଵ + ηଵ)

(g଴ − 1)h଴ − hଶηଶ ∙
tଶ

1 − tଶ
− hଷηଷ ∙

tଷ
1 − tଷ

− hସηସ ∙
tସ

1 − tସ
+ hଵ(ζଵ + ηଵ)

 

tଵ =
wଶtଶ

wଵ
−

(wଶ − wଵ)

wଵ
൦1 −

hଶζଶ

(g଴ − 1)h଴ + (gଵ − 1)hଵ − hଶηଶ ∙
tଶ

1 − tଶ
− hଷηଷ ∙

tଷ
1 − tଷ

− hସηସ ∙
tସ

1 − tସ
+ hଶζଶ

൪ 

tଶ =
wଷtଷ

wଶ
−

(wଷ − wଶ)

wଶ
൦1 −

hଷζଷ

(g଴ − 1)h଴ + (gଵ − 1)hଵ + (gଶ − 1)hଶ − hଷηଷ ∙
tଷ

1 − tଷ
− hସηସ ∙

tସ
1 − tସ

+ hଷζଷ

൪ 

tଷ =
wସ

wଷ
tସ −

(wସ − wଷ)

wଷ
቎1 −

hସζସ

(g଴ − 1)h଴ + (gଵ − 1)hଵ + (gଶ − 1)hଶ + (gଷ − 1)hଷ − hସηସ ∙
tସ

1 − tସ
+ hସζସ

቏ 

We then proceed to solve this set of equations by scanning through all possible values of tସ (between 0 and 1), 

until a solution that satisfies all first order conditions is obtained. Note that, while this set of equations has 

multiple solutions there is always only one solution that satisfies the following conditions: 1) the marginal tax rate 

for each wage group must be smaller than 1; 2) the marginal tax rate must be increasing with wages. 

Solving the system with endogenous social weights ݃௜ and group size ℎ௜ using iteration 

The solution for the set of equations initially takes the social weights g୧ and group size h୧ as exogenous. However, 

as Saez (2002) explains: “it is important to note that the social weights g୧ are not exogenous parameters but 

depend on the tax schedule (c଴, … , c୍) that is currently implemented, For example, if after-tax incomes are 

equalized across occupations, then there is no reason to desire further redistribution at the margin, and the 
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marginal weights should no longer be decreasing with i“. To simplify the computations Saez (2002) takes the 

function g(∙) as exogenous, but also states that: “the individual weights of the classical approach can always be 

chosen such that the resulting g୧′s match the desired marginal social welfare function g(∙)”. That is to say, that a 

tax schedule can be found such that the post-redistribution consumption levels yield social weights that perfectly 

correspond to the implemented tax schedule. Similarly, each group’s size h୧ is also endogenous and depends on 

the implemented tax schedule. Thus, a tax schedule can be found such that the post-redistribution consumption 

levels yield a set of g୧′s and group size h୧′s, that (together) perfectly correspond to the implemented tax schedule. 

In our simulations we succeed in computing an optimal tax schedule which takes into account the endogeneity of 

the social weights g୧ and group sizes h୧, by applying the following iterative sequence:  

1. The tax schedule is initially computed using the (exogenous) social weights and group sizes that 

correspond to pre-tax consumption levels. I.e. – the social weights and group sizes that persisted prior to 

redistribution via taxes and transfers. 

2. Using the tax schedule that was computed in (1), new social weights and group sizes are computed. 

3. Those newly computed values of g୧ and h୧ are then used to compute a new tax schedule. 

4. The new tax schedule is then used to compute new values of g୧ and h୧, and so forth. 

5. This iterative sequence is repeated until the tax schedule in iteration n perfectly matches the tax schedule 

in iteration n-1. The resulting values of g୧ and h୧ that are obtained upon convergence are the correct 

social weights and group sizes of the after-tax steady state equilibrium. 
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APPENDIX 2 

The following are the details of the simulation presented in Figure 7. 

Table A.2 – A Triangle vs. a Trapezoid 

Average wage in group W0 W1 W2 W3 W4 W5 W6 W7 W8 

Triangle 0 1000 3000 5000 7000 9000 11000 13000 17060 

Trapezoid 0 1000 3000 5000 7000 9000 11000 13000 17060 

Consumption in group C0 C1 C2 C3 C4 C5 C6 C7 C8 

Triangle 3743 4956 5678 5808 5836 6065 6262 6434 7769 

Trapezoid 1711 2924 4924 6711 6961 7186 7381 7553 8900 

Average tax rate in group At0 At1 At2 At3 At4 At5 At6 At7 At8 

Triangle 0.0% -21.3% 35.5% 58.7% 70.1% 74.2% 77.1% 79.3% 76.4% 

Trapezoid 0.0% -21.3% -7.1% 0.0% 27.2% 40.9% 49.9% 56.2% 58.8% 

Marginal tax rate in group Mt0 Mt1 Mt2 Mt3 Mt4 Mt5 Mt6 Mt7 Mt8 

Triangle 0% -39% 35% 75% 95% 82% 85% 86% 54% 

Trapezoid 0% -21% 0% 11% 95% 89% 90% 91% 67% 

Groups' social weights  g0 g1 g2 g3 g4 g5 g6 g7 g8 

Triangle 

          

1.80  

      

1.33  

       

0.85  

           

0.81  

           

0.80  

           

0.86  

           

0.80  

         

0.75  

      

0.50  

Trapezoid 

          

1.80  

      

1.33  

       

0.85  

           

0.81  

           

0.80  

           

0.86  

           

0.80  

         

0.75  

      

0.50  

group size after taxes (h'i) h'0 h'1 h'2 h'3 h'4 h'5 h'6 h'7 h'8 

Triangle 25.2% 5.4% 8.5% 5.7% 3.5% 9.5% 7.6% 6.0% 28.6% 

Trapezoid 11.4% 5.4% 14.2% 13.9% 3.5% 9.5% 7.6% 6.0% 28.6% 

Group's contribution to social welfare SW0 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 

Triangle 1694 353 413 269 165 495 377 290 1102 

Trapezoid 368 215 604 761 195 581 441 337 1253 

Note that the increase in welfare arrives mainly from re-distribution sine a triangle allows for higher resources to 

be delivered to the unemployed. 
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