
Course Description

Course program and
reading list
Semester 1 Year 2024

School: Efi Arazi School of Computer Science B.Sc

Digital Systems

Lecturer:

Prof. Shimon Schocken schocken@runi.ac.il

Teaching Assistant:

Mr. Yitzchak Vaknin yitzchak.vaknin@post.runi.ac.il

Course No.:

3955

Course Type :

Elective

Weekly Hours :

3

Credit:

4

Course Requirements :

Final Paper

Group Code :

241395501

Language:

English

Prerequisites

Prerequisite:

56 - Discrete Mathematics
417 - Introduction To Computer Science

Students who took one of the courses listed below will not be
allowed to register to the course Digital Systems (3955):

79 - Digital Architectures
287 - Digital Systems Construction

mailto:schocken@runi.ac.il
mailto:yitzchak.vaknin@post.runi.ac.il

Digital Systems / Nand to Tetris:

Building a Modern Computer System from First Principles

Instructor: Shimon Schocken

Fall 2023

The game of the name: The elementary logic gate Nand (or its close relative Nor) is the

basic building block from which all computers are made. In this course we start from the

humble Nand gate and work our way upward through the construction of a modern

computer system – hardware and software – capable of running Tetris, and any other

program. In the process, we will learn how computers work, how they are constructed,

and how to carry out system building projects using supplied API’s and guided unit-

testing.

Prerequisites: Introduction to Computer Science. All the knowledge required for building

the computer and completing the assignments will be gained in the course.

Description: Nand to Tetris is a journey of discovery, synthesizing key topics in applied

computer science in one unified, hands-on framework. This is done constructively, by

building a general-purpose computer system from the ground up. We will utilize key ideas

and techniques used in the design of modern hardware and software systems, and

discuss major trade-offs and future trends. As the course progresses, you will gain many

cross-section views of the computing field, from gate logic to chip design to the

compilation of high-level software abstractions. We will also provide a historical

perspective, focusing on key people, circumstances and innovations that paved the way

to the digital computer.

Lectures: One class meeting, each week. Regular track: Sundays, 09:45 to 12:15.

International track: Mondays, 18:30 to 21:00. In both tracks, the language of instruction is

English.

Methodology: This is mostly a hands-on course. Each hardware and software module will

be introduced by an abstract specification and an executable solution, illustrating what

the module is designed to do. This will be followed by a detailed implementation guideline,

proposing how to build the module, and a test script, specifying how to test its evolving

implementation.

Programming: The hardware modules will be built using a simple Hardware Description

Language (HDL), learned in the course. You will simulate and test your HDL-based chips

on a supplied hardware simulator running on your PC – just like chips are designed in

practice. The software hierarchy (assembler, virtual machine, compiler) will be developed

in Java. Students who want to do so can use other languages like Python or Perl.

Testing: The hardware and software modules built in the course will be tested twice. First,

you will test your solutions on your PC, using supplied simulators and test scripts. Second,

the course staff will test your work, using test scripts that may add additional testing

scenarios.

Resources: All course materials – lecture notes, simulators, software tools, tutorials and

test programs – will be available for download / access from the course web site.

Workload: All the assignments can be done by pairs of students. We provide extensive

support, including supplied API’s, guided unit-testing, and partial implementations. As a

result, the course workload is quite average.

Course Grade: 60% homework assignment grades, 40% final examination grade.

Books (recommended / optional reading):

Nisan and Schocken, The Elements of Computing Systems, MIT Press, 2021, 2nd Edition

Isaacson, The Innovators, Simon & Schuster, 2015

Patterson and Hennessy, Computer Organization and Design RISC-V Edition, Morgan

Kauffman, 2020 (or latest edition).

Course Plan (by week)

Part I: Hardware

We will build a general-purpose computer equipped with a symbolic machine language

and an assembler. To give motivation and context, we’ll start the course by demonstrating

some video games that run on this computer: Pong, Snake, Space Invaders, Life, Google’s

Dyno, and more.

October 22 / Boolean logic: We’ll present basic concepts in gate logic and Boolean

algebra, and discuss the importance of separating abstraction from implementation. We’ll

provide a theoretical proof that any computer can be built from Nand gates only, and

present a simple Hardware Description Language that allows doing it in practice. In

assignment 1 you will use this HDL to build a set of elementary logic gates (And, Or, Not,

Mux,...) from primitive Nand gates.

October 22 / Boolean arithmetic: We’ll learn how to use bits (0’s and 1’s) for representing

signed numbers, and how to use logic gates for realizing arithmetic operations on such

bitwise representations. We will then show how elementary logic gates can be used to

build a family of adder chips, culminating in the construction of an Arithmetic-Logic Unit.

In assignment 2 you will build this ALU, using the logic gates built in assignment 1.

October 29 / Memory: We’ll explain how sequential logic, clocks, and elementary time-

dependent gates called flip-flops can be used to maintain state and realize memory units.

We’ll also discuss the crucial invention of the transistor. In assignment 3 you will build a

memory hierarchy, from single-bit cells to registers and RAM units of arbitrary sizes.

November 5 / Machine language: This is the critical interface where high-level software is

ultimately reduced to binary codes committed to silicon. We’ll introduce an instruction set

and an abstract computer architecture, and learn how to write low-level programs on this

platform. We’ll also learn how to handle input / output devices like screen and keyboard,

using memory-resident bitmaps. In assignment 4 you will write low-level interactive

programs in assembly language and execute them on a supplied CPU emulator, running

on your PC.

November 12 / Computer architecture: We’ll describe the stored program concept, the

fetch-execute cycle, and a ubiquitous computing framework that informs the design of all

computer architectures. We will also discuss the microchip revolution. We will then show

how the chips built in weeks 1-3 can be integrated into a computer platform capable of

executing programs written in the instruction set introduced in week 4. In assignment 5

you will build this computer, and use it to run the programs you wrote in assignment 4.

November 19 / Assembler: In 1843, Ada Lovelace showed how symbolic instructions can

liberate programming from the obscure tyranny of physical instructions. We will learn how

to translate the symbolic instructions introduced in week 4 into the binary micro-codes

understood by the computer built in week 5. In order to develop this translator, known as

assembler, we will learn basic techniques for parsing, code generation, and symbol

resolution. This will set the stage for assignment 6, in which you will write this assembler in

Java.

Part II: Software

Using the computer built in Part I as a point of departure, we will build a tiered software

hierarchy consisting of a virtual machine, a compiler for a simple java-like programming

language, and a basic operating system. Acting as the systems architects, we’ll provide all

the necessary API’s, implementation guidelines, and test programs.

November 26 / Virtual machine I: Modern compilers typically translate high-level

programs into an intermediate “bytecode”, designed to run on an abstract, virtual

machine. Following a discussion of pushdown automata and stack processing, we’ll

discuss the role of virtual machines in software architectures like Java, Python, and .NET.

We will then present a simple JVM-like language that provides push/pop and stack

arithmetic services. In assignment 7 you’ll develop a basic VM translator that translates

commands written in this language into assembly code, designed to run on the computer

built in part I of the course.

December 3 / Virtual machine II: We’ll discuss two fundamental programming artifacts –

branching and subroutines – and show how they can be realized on our virtual machine.

In particular, we’ll discuss algorithms for stack-based implementation of function-call-

and-return, and recursion. In assignment 8 you will extend the basic translator built in

assignment 7 into a complete VM translator. This translator will serve as the backend of

the compiler that will be built later in the course.

December 17 / High Level Language: We’ll present the top-most layer of our software

hierarchy: A simple, object-based, java-like language. In assignment 9 you will use this

language to implement a simple computer game of your choice. It will be thrilling to see

this game running on the computer that you’ve built in Part I of the course. You will

develop this program using executable versions of the compiler and OS that we now turn

to describe.

December 24 / Compiler I: We’ll discuss context-free grammars and recursive parsing

algorithms, and show how they can be used for building a syntax analyzer (tokenizer and

parser) for the high-level language presented in week 9. The syntax analyzer will generate

XML code reflecting the structure of the translated program. In assignment 10 you will

implement this analyzer, using a proposed software architecture and API.

December 31 / Compiler II: We’ll discuss how to realize high-level programming

abstractions (classes, methods, statements, expressions, objects, etc.) by generating VM

code for our virtual machine. In assignment 11 you will morph the syntax analyzer built in

week 10 into a full-scale compiler. This will be done by replacing the routines that wrote

passive XML with routines that generate executable VM code for the stack machine

developed in weeks 7-8.

January 7 / Operating system: The OS is designed to close gaps between the software

hierarchy built in Part II and the computer platform built in Part I. We’ll discuss space/time

trade-offs, and present classical algorithms for managing memory, realizing mathematical

operations, rendering graphics, handling strings, and more – efficiently and elegantly. In

assignment 12 you will implement these algorithms, leading up to a basic operating

system.

January 14 / More fun to go: We’ll discuss ideas for optimizing and extending the

hardware and software systems built in the course. For example, how to speed up the

CPU operations, how to connect the computer to the Internet, how to implement a file

system and an OS shell, and so on. We’ll also illustrate how to realize the computer built in

this course in silicon, using an important hardware technology known as FPGA. These are

some of our design itches; What are yours?

Course Goals

See "course description".

Grading

See "course description".

Reading List

See "course description".

	Course program and reading list
	School:
	Digital Systems
	Prerequisites
	Prerequisite:
	56 - Discrete Mathematics 417 - Introduction To Computer Science
	Students who took one of the courses listed below will not be allowed to register to the course Digital Systems (3955):
	79 - Digital Architectures 287 - Digital Systems Construction
	Course Description
	Course Goals
	Grading
	Reading List

